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Abstract
Empirical studies of phenotypic plasticity often use an experimental design in which the subjects in experimental treat-
ments are exposed to cues, while the subjects in control treatments are maintained in the absence of those cues. However, 
researchers have virtually ignored the question of what, if any, information might be provided to subjects by the absence of 
the cues in control treatments. We apply basic principles of information-updating to several experimental protocols used to 
study phenotypic plasticity in response to cues from predators to show why the reliability of the information provided by 
the absence of those cues in a control treatment might vary as a function of the subjects’ experiences in the experimental 
treatment. We then analyze Bayesian models designed to mimic fully factorial experimental studies of trans and within-
generational plasticity, in which parents, offspring, both or neither are exposed to cues from predators, and the information-
states of the offspring in the different groups are compared at the end of the experiment. The models predict that the pattern 
of differences in offspring information-state across the four treatment groups will vary among experiments, depending on the 
reliability of the information provided by the control treatment, and the parent’s initial estimate of the value of the state (the 
parental Prior). We suggest that variation among experiments in the reliability of the information provided by the absence 
of particular cues in the control treatment may be a general phenomenon, and that Bayesian approaches can be useful in 
interpreting the results of such experiments.

Keywords  Developmental plasticity · Parental effects · Within-generational plasticity · WGP · Transgenerational plasticity · 
TGP · Socially cued plasticity · Updating · Social cues

Introduction

Empiricists studying phenotypic plasticity frequently use 
experimental designs in which the subjects are randomly 
divided into two treatment groups. In one group (the experi-
mental treatment), the subjects are exposed to certain stimuli 
over the course of development, while in the other group (the 

control treatment), the subjects are reared in the absence 
of those stimuli. At the end of the experiment, differences 
between the phenotypes of the experimental and the treat-
ment groups are used to assess phenotypic plasticity. For 
instance, many investigators have used this protocol to study 
phenotypic plasticity in response to stimuli from predators. 
Versions of this protocol have been used to study within-
generational plasticity (WGP: e.g., when exposure to stimuli 
within an individual’s lifetime affects the development of its 
traits (e.g., Relyea 2001), transgenerational plasticity (TGP: 
when exposure to stimuli for parents affects the development 
of traits in their offspring (e.g., Storm and Lima 2010), and 
recently, trans- and within-generational plasticity (TWP: 
when exposure to stimuli in the parental and in the offspring 
generation affects the development of traits in the offspring 
(e.g., Stein et al. 2018) (see Table 1 for terms).

An implicit assumption in such experiments is that the 
stimuli used in the treatment group provide the experimental 
subjects with information about some aspects of the external 
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environment. For instance, exposure to a certain concen-
tration of kairomones from a particular species of predator 
might provide prey individuals with information about the 
density of that type of predator. In addition, it is assumed 
that the only reason that the stimuli from predators affect 
development is because they provide information. This is in 
contrast to other types of experiences which induce changes 
in development, because they have lasting effects on somatic 
states, instead of, or in addition to, providing information 
about the external environment (see Engqvist and Reinhold 
2016; Nettle and Bateson 2015; Nettle et al. 2013; Sultan 
2017). Examples of inductive experiences with direct effects 
on a developing organism’s somatic state include food depri-
vation in animals, shade in plants, and extreme temperatures 
in either. Conversely, examples of information-only induc-
tive experiences include stimuli from predators, conspecif-
ics, or competitors. As Nettle and Bateson (2015) point out, 
if an inductive cue is information-only, then one can imagine 
a single loss-of-function mutation that completely abolishes 
an individual’s ability to detect that cue, but which leaves the 
developing individual otherwise unaffected.

However, while it is widely assumed that phenotypic plas-
ticity may occur in response to exposure to information-
only cues, empiricists and theoreticians alike have virtually 
ignored two questions: 1) what, if any, information might 
be provided to the same organisms if they are raised in the 
absence of those cues, and 2) how information from ances-
tors (i.e., provided by genes or parental effects) and/or a 
subject’s own experiences earlier in life) would affect the 
results of such experiments. To answer both questions, we 
need to consider how organisms integrate information from 
different sources and different times to update their estimates 
of conditions in their environment. Because Bayesian updat-
ing is in principle the optimal way to combine information 

to estimate variables in the external environment (Lange and 
Dukas 2009; McNamara et al. 2006), in recent years, a num-
ber of authors have used Bayesian models to study develop-
mental plasticity in response to various types of experiences 
(English et al. 2016; Fawcett and Frankenhuis 2015; Fischer 
et al. 2014; Frankenhuis and Panchanathan 2011; Panchana-
than and Frankenhuis 2016; Stamps and Krishnan 2014a, 
b, 2017), review in Stamps and Frankenhuis (2016). Thus 
far, Bayesian models of development have focused on WGP, 
and investigated how information from its ancestors (in the 
form of an initial information-state modelled by a prior 
distribution) combines with the information provided by a 
series of experiences over an individual’s lifetime to affect 
its information-state and/or its phenotype. Here, we expand 
the scope of inquiry to consider information-updating in the 
context of TWP, and use Bayesian approaches to model situ-
ations in which a parent’s information-state at the onset of 
an experiment (provided by a parental prior distribution) 
combines with information from parental experiences and 
information from offspring experiences to affect the off-
spring’ estimates of conditions in the external environment.

To take advantage of the rich theoretical and empirical 
literature on the effects of stimuli from predators on phe-
notypic plasticity, we designed our models to mimic an 
experiment in which parents, offspring, both or neither are 
either exposed to cues from predators (P treatments), or not 
exposed to those cues (N treatments). That is, we model 
fully factorial experiments with four treatment groups: both 
parents and offspring are exposed to predator cues (PP), par-
ents but not offspring are exposed to predator cues (PN), 
offspring but not parents are exposed to predator cues (NP) 
and neither parents nor offspring are exposed to preda-
tor cues (NN), where the first letter indicates the parent’s 
experience, and the second letter indicates the offspring’s 

Table 1   Terms

Estimate: an organism’s current estimate of the value of a state of the environment. In Bayesian models, this estimate is provided by the mean 
of the organism’s current prior or posterior distribution

Likelihood (likelihood function): a distribution specifying the conditional probability that a particular experience will occur, given each of the 
possible values of a state of the environment

NN: An experimental design in which neither parents nor offspring are exposed to cues from predators
NP: An experimental design in which parents are not exposed to cues from predators, offspring are exposed to those cues
Parental Prior: A distribution indicating the parent’s assessment of the probability of all possible values of a state of the environment at the 

beginning of an experimental study of TGP or TWP. The mean of a parental prior indicates the parent’s estimate of the value of the state; the 
variance of a parental prior indicates the parent’s level of confidence in that estimate

PN: An experimental design in which parents are exposed to cues from predators, offspring are not
PP: An experimental design in which both parents and offspring are exposed to cues from predators
State of the environment: A variable in the external environment (e.g., predator density). Particular cues (e.g., a certain concentration of chemi-

cals produced by a predator) can be used to update an organism’s estimate of particular states of the environment
TGP: Transgenerational plasticity
TWP: Within and transgenerational plasticity
WGP: Within-generational plasticity
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experience. Examples of experiments which have used this 
design to investigate the combined effects of cues from pred-
ators within and across generations on offspring phenotypes 
include Agrawal et al. (1999), Beaty et al. (2016), Donelan 
and Trussell (2018), Luquet and Tariel (2016), and Stein 
et al. (2018).

For each treatment group, we determined the offspring’s 
estimate of the value of a variable in the external environ-
ment (e.g., its estimate of predator density) at the end of the 
experiment. That is, we focused on the information-states of 
the offspring in the four treatment groups, not their pheno-
types. Given our goal of analyzing the information provided 
by the absence of particular cues, there were several advan-
tages to this approach. First, information-based models that 
predict phenotypic traits typically rely on highly simplified 
assumptions about information-updating to make the models 
mathematically tractable. For instance, virtually, all of the 
recent information-based models that predict the evolution 
of developmental systems or trait values assume that the 
environmental state that is being estimated can only take on 
one of two discrete values, e.g., a habitat that is either type 
A or type B (English et al. 2016; Fischer et al. 2014; McNa-
mara et al. 2016; Panchanathan and Frankenhuis 2016). As 
we show below, analysis of the information provided by the 
absence of particular cues requires more complicated models 
in which the environmental state that is being estimated can 
take on a range of different values. Second, this approach 
allows us to trace how and why different assumptions about 
the information provided by the absence of particular cues 
would affect offspring estimates of the value of environmen-
tal variables. This is more difficult in models which pre-
dict phenotypes, because of the host of assumptions about 
variables other than information-updating (e.g., details of 
a species’ life-history, developmental constraints, the opti-
mal shape of functional relationships between estimates and 
trait values, environmental factors besides the one of inter-
est) that are required to predict the trait values that will be 
expressed by individuals as a function of their experiences 
earlier in life.

Finally, in experimental studies of phenotypic plasticity 
in response to information-only cues, differences among 
treatment groups in information-state set a lower limit for 
inter-group differences in phenotypes. This is because the 
researchers who conduct this type of experiment typically 
randomly assign subjects to their respective treatments and 
thereafter maintain them under the same conditions, except 
for the presence or absence of the cues of interest in the 
experimental and control treatments. In this situation, if the 
subjects in two or more treatment groups ended up with 
the same estimate of the value of a state of the environ-
ment, there would be no reason to expect them to exhibit 
different trait values related to that state. Hence, although 
differences among treatment groups in their estimates of 

the value of a state need not map directly onto differences 
among those groups in their phenotypes, the absence of dif-
ferences among treatment groups in their estimates would 
be expected to result in a lack of differences among them in 
their phenotypes.

Assumptions about the information 
provided by the presence or absence 
of particular experiences and the parent’s 
prior distribution

To appreciate the information that might be provided to 
experimental subjects by the absence of cues from predators 
in an N treatment, we need to consider some basic principles 
of information-based models of phenotypic plasticity. We 
describe these here in non-technical terms; readers interested 
in more details are directed to the Online Resource, and the 
references cited therein.

Any model of information-updating begins by specifying 
three things: the ‘state of the environment’ that individuals 
are attempting to estimate, the information about that state 
that is provided by a particular experience, and the subject’s 
estimate of the value of that state before it has that experi-
ence. In Bayesian models, the information about a given 
state that is provided by a particular experience is modelled 
by the ‘likelihood function’ for that experience, and a sub-
ject’s estimate of the value of that state before it is exposed 
to the experience is modelled by its prior distribution.

The first step in modelling empirical studies of plasticity 
in response to cues from predators is to identify a state of the 
environment for which the exposure to cues from predators 
in the experimental treatment indicates a value that is dif-
ferent from the value indicated by the absence of those cues 
in the control treatment. This is because if conditions in the 
experimental treatment and conditions in the control treat-
ment indicate similar values of a state (e.g., if the likelihood 
functions for the subjects’ experiences in the P and the N 
treatments had similar means), we would expect the pheno-
types of the subjects in the two treatments to have similar 
means. Then, after such a state has been identified, we need 
to compare the reliability of the information provided by 
exposure to the cues in the P treatment with the reliability 
of the information provided by the absence of those cues 
in the N treatment (in Bayesian models, the reliability of 
information provided by a given experience is indicated by 
the variance of the likelihood function for that experience, 
see Online Fig. 1).

As a first approximation, when animals are exposed to 
stimuli from predators, it may be useful to assume that the 
state of the environment that they are estimating is ‘risk of 
predation’ (Agrawal et al. 1999; Donelan and Trussell 2018; 
Seiter and Schausberger 2015; Stein et al. 2018). However, 
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in nature, animals may be exposed to many different cues 
from predators, and this variety has encouraged investiga-
tors to use different cues and protocols in their experiments. 
As a result, we must delve deeper to identify states of the 
environment for which exposure to the cues in a P treatment 
would indicate different values than the absence of those 
cues in an N treatment.

For instance, in nature, aquatic animals may be exposed 
to olfactory cues (kairomones) from predators for much to 
all of their lifetimes. Based on these observations, empiri-
cists have demonstrated that being reared from birth to matu-
rity in the presence of such cues affects the development 
of a variety of antipredator traits. In such cases, it is often 
assumed that the subjects in the P treatment are using the 
concentration of kairomones from predators to estimate the 
value of the state ‘predator density’(Ferrari et al. 2010; Gil-
bert 2011; Luttbeg et al. 2020; Roux et al. 2014; Shaffery 
and Relyea 2016). This assumption is supported by observa-
tions that antipredator behavioral and morphological traits 
often increase as a function of concentrations of kairomones 
from predators in a dose-dependent manner (Gilbert 2011; 
Loose and Dawidowicz 1994; Miyakawa et al. 2015; Roux 
et al. 2014; Shaffery and Relyea 2016; Van Buskirk and Ari-
oli 2002). In such cases, it would be reasonable to assume 
that the conditions in the P and N treatments indicate dif-
ferent values of predator density. For instance, if prolonged 
exposure to a high concentration of kairomones in the P 
treatment indicated that predator density was high, pro-
longed exposure to no kairomones in the N treatment would 
indicate that predator density was low, since in the latter 
case, the concentration never exceeded the preys’ threshold 
for detection. In addition, it would be reasonable to assume 
that the reliability of the information provided by the con-
tinued absence of kairomones in the N treatment would be 
similar to the reliability of the information provided by their 
continued presence in the P treatment.

In other situations, animals may be briefly, but repeatedly, 
exposed to cues from predators over the course of ontogeny. 
Thus, some populations of guppies (Poecilia reticulata) live 
in streams which also contain piscine predators (Crenicichla 
sp.)(Magurran 2005), such that in nature, a juvenile guppy 
might detect this predator swimming nearby on multiple 
occasions prior to maturity. Experiments designed to mimic 
brief, repeated encounters of guppies with this predator (e.g., 
5 min exposure to visual and chemical cues from Crenicichla 
at randomly chosen times of day, 5 days a week) have shown 
that this type of experience can affect the development of 
both body size and relative brain size in guppies (Reddon 
et al. 2018). In such cases, it is assumed that repeated, brief 
exposures to predator stimuli provide the prey with informa-
tion about the state ‘encounter rate’ (e.g., Luttbeg and Trus-
sell 2013). In this situation, it would be reasonable to assume 
that if repeated exposures to visual cues from a predator in 

the P treatment indicated with a certain level of reliability 
that the encounter rate was high, then the absence of these 
cues in the N treatment would indicate, with a similar level 
of reliability, that the encounter rate was low.

In contrast, other types of experiences involving stim-
uli from predators are unlikely to occur many times over 
the life of an individual. Examples include a near-escape 
from a direct attack by a predator. If an attack by a predator 
is likely to have a lethal outcome, then a given individual 
would be unlikely to have and survive many such attacks 
over the course of its lifetime. In addition, we would expect 
per-capita rates of successful attacks on prey individuals by 
predators to be low at a given locality, since moderate-to-
high rates of lethal attacks by predators can lead to local 
extinction (Armstrong et al. 2006; Festa-Bianchet et al. 
2006). However, empirical studies have shown that even one 
near-escape from a predator can have enduring effects on 
behavioral and other traits. Thus, in nature, the probability 
that an insect pollinator will be attacked by a spider lurking 
in a flower is low (Morse 1986), but even one such attack 
can change the pollinator’s subsequent behavior (Dukas and 
Morse 2003). Similarly, a single unprotected exposure of a 
rat to a cat can have long-lasting effects on the rat’s brain 
and behavior (Adamec et al. 2006).

However, if the cue in a P treatment consisted of a sin-
gle near-escape from a predator over an extended (e.g., 
a 4-month) period, then the presence of this cue in the P 
treatment and the absence of this cue in the N treatment 
would indicate similar values of some states of the envi-
ronment relevant to predation risk. For instance, the preys’ 
experiences in both treatments would indicate that predator 
density was low. Similarly, the preys’ experiences in both 
treatments would indicate comparably low values of another 
state, ‘encounter rate per day’, based on the subjects’ history 
of 0.008 encounters/day in the P treatment, versus 0.000 
encounters/day in the N treatment.

However, a single near-escape from a predator in the P 
treatment over an extended period of time could provide the 
individuals in the P and the N treatments with different esti-
mates of another state related to predation risk: the probabil-
ity that a predator that poses a direct, potentially lethal threat 
to the experimental subject lives in the area. In that case, the 
attack in the P treatment might indicate that such a predator 
lived in the area, whereas the absence of any attacks in the 
N treatment might indicate that it did not. This interpretation 
would be reasonable in species in which ambush predators 
sometimes do and sometimes do not overlap spatially with 
a given prey individual, but when they do, the predators are 
site-faithful for periods as long or longer than the lifetime 
of a prey individual. Moreover, in this case, the reliability 
of the information provided by the subject’s experiences in 
the P and the N treatment might differ considerably. That is, 
a single near-escape might indicate, with a relatively high 
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level of reliability, that a threatening predator was in resi-
dence. In contrast, the absence of attacks in the N treatment 
would not be expected to provide an equally reliable indica-
tion that a threatening predator did not live in the area. This 
is because not being attacked by a predator over a 4-month 
period might indicate that the predator was absent, but that 
same experience would also be consistent with a situation in 
which the predator did live in the area, but the subject simply 
had not encountered it yet. Bayesian analyses of other rare 
events (e.g., estimating whether or not earthquakes occur at a 
given location) have shown that although an extended period 
in which no events occurred may provide some information 
about the state of the environment, the reliability of this 
information is typically low (Mangel and Beder 1985; Quig-
ley et al. 2007; Styron and Hetland 2014). Hence, in this 
situation, it seems reasonable to assume that the reliability 
of the information provided by the cues in the P treatment 
would be higher than the reliability of the cues provided by 
the absence of those cues in the N treatment.

Based on these considerations, we designed and analyzed 
two sets of Bayesian models of the effects of cues for parents 
and offspring on offspring estimates of states of the envi-
ronment. In both sets, we assumed that reliable information 
about a state of the environment related to risk of preda-
tion was provided by the cues in the P treatment. However, 
for the first set of models, we assumed that the information 
provided by the cues in the P treatment and the absence of 
those cues in the N treatment was equally reliable, whereas 
for the second set, we assumed that the information provided 
by the cues in the P treatment was much more reliable than 
the information provided by their absence in the N treatment. 
Then, we used both sets of models to predict the offspring 
estimates which we would expect in the NN, NP, PN, and PP 
treatment groups in experimental studies of TWP.

In addition, for each set of models, we asked whether dif-
ferences in the information-state of the parents at the onset 
of the experiment would affect the results. Currently, most 
empiricists studying TWP focus on the information provided 
by the cue, which is equivalent to assuming that parents have 
no information about the value of a state at the beginning 
of the experiment. We instead assume that parents might 
begin an experiment with an initial estimate of the value of 
the state of interest, and model this estimate by the mean 
of the parental Prior distribution. In theory, parental Priors 
could vary among experiments, e.g., among populations as 
a result of different information provided by genes or inher-
ited epigenetic factors, or among different samples from the 
same population, e.g., as a function of different experiences 
the parents had before they were placed in their respective 
treatments. Hence, strong effects of parental Priors on the 
results of either set of models would suggest that more atten-
tion be paid to this factor in theoretical and empirical studies 
of TWP.

Methods

Background information on the Bayesian models of develop-
ment used in the current article is described in the Online 
Resource. We assumed that each parent began with a prior 
distribution (Prior), based on information from their ances-
tors and any experiences they had before the experiment, 
where the mean of the parental Prior indicates the parent’s 
initial estimate of the value of a state, and the variance of the 
parental Prior indicates the parent’s confidence in that esti-
mate. We did not consider parental Priors with low variance, 
since in that situation, even the most reliable cues have little 
to no effect on estimates of the value of the state. Prelimi-
nary analyses indicated that for Priors with intermediate-to-
high variance, the variance of the Priors had no qualitative 
effects on the patterns generated by the models. Hence, in 
the text, we present results based on three informative Priors, 
with different means (0.1, 0.5, and 0.9) and the same vari-
ance (0.04). We also analyzed models in which the parental 
Prior provided no information about the state (a uniform 
distribution with mean = 0.5, variance = 0.0833), but since 
the results for this Prior were qualitatively similar to those 
for the informative Prior with a mean of 0.5, they were not 
considered further.

We assumed that cues from the predator in the P treat-
ment were always informative, and used beta functions 
with shapes modelled by α > β to indicate the cumulative 
likelihood functions for the conditions in the P treatments 
(Online Fig. 1a). We assumed that parents and offspring in 
the P treatments were exposed to the same cues for the same 
period of time, so we used the same cumulative likelihood 
functions for the P treatments for parents and offspring.

Based on the expectation that different experimental pro-
tocols might result in differences in the relative reliability 
of the information provided by conditions in the P and the 
N treatments (see above), we analyzed two sets of models 
which differed with respect to their assumptions about the 
reliability of the information provided by the N treatment. In 
the first set (N* models), the information provided by the P 
treatment and the information provided by the N treatment 
were equally reliable. In this case, the cumulative likeli-
hood function for the N treatment was the mirror-image of 
the cumulative likelihood function for the P treatment. For 
instance, if all of the experiences in the P treatment resulted 
in a cumulative likelihood function that indicated that the 
value of the state of the environment was likely to be high 
(e.g., with a shape modelled by α = 8, β = 1), conditions in 
the N treatment had a cumulative likelihood function which 
indicated that the value of the state was likely to be low (e.g., 
with a shape modelled by α = 1, β = 8 (Online Fig. 1b).

In the second set of models (N-), the information 
provided by the N treatment was less reliable than the 
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information provided by the P treatment. We first ana-
lyzed this situation by assuming that conditions in the P 
treatment were either highly reliable (likelihood with a 
shape modelled by α = 8, β = 1) or weakly reliable (like-
lihood modelled by α = 2, β = 1), while conditions in N 
provided no information about the state (i.e., the cumula-
tive likelihood function for the N treatment had a uni-
form distribution (α = 1, β = 1) (Online Fig. 1c). We also 
analyzed models in which the information provided by 
the N treatment was weakly reliable, but much less reli-
able than the information provided by the P treatment. The 
results of these analyses were qualitatively the same as 
those of models in which the information provided by the 
P treatment was highly reliable and conditions in N were 
non-informative, so in the interest of brevity, they are not 
considered further.

For all of the models, we computed the offspring esti-
mates of the value of the state at the end of their respective 
treatments, where each estimate was the mean of the off-
spring posterior distribution at the end of the experiment.

Results

General patterns

The differences between the offspring estimates for the 
four treatment groups depended on the reliability of the 
cues to which the subjects were exposed. In both the N* 
and the N- models, the differences among the estimates for 
the four treatment groups were more pronounced when the 
cues in the P treatment were highly reliable than when the 
cues in the P treatment were less reliable (compare Fig. 1a 
versus 1b, and Fig. 2a versus 2b).

For all parental Priors and likelihood functions, the 
offspring estimate for the NP group was the same as the 
offspring estimate for the PN group (Figs. 1 and 2). This 
result indicates that additional assumptions would be 
required to predict different offspring estimates for the NP 
and PN treatment groups.

Fig. 1   N* models; different cue reliabilities. P treatment = expo-
sure to cues from a predator; N treatment = no cues from predators. 
First letter = parental treatment, second letter = offspring treatment. 
In these models, exposure to cues in the P treatment and the absence 
of cues in the N treatment provide equally reliable information, such 
that the cumulative likelihood functions for the P and N treatments 
are mirror-images of one another. a Exposure to cues in the P treat-
ment indicates with high reliability that the state of the environment 
is likely to be high (likelihood modelled by α = 8, β = 1); absence of 
cues in the N treatment indicates with high reliability that the state 

of the environment is likely to be low (likelihood modelled by α = 1, 
β = 8). b Exposure to the cues in the P treatment indicates with low 
reliability that the state of the environment is likely to be high (likeli-
hood modelled by α = 2, β = 1); absence of cues in the N treatment 
indicates with low reliability that the state of the environment is 
likely to be low (likelihood modelled by α = 1, β = 2). Predicted off-
spring estimates of the value of a state of the environment (e.g., esti-
mates of predator density) for each of the four treatment groups (NN, 
PN, NP, and PP) are indicated for parental Priors with three different 
means (0.1, 0.5, and 0.9) and the same variance (0.04)
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Reliability of information in the N treatment: N* 
versus N‑ models

N* models

When conditions in the N treatment provided information 
as reliable as that provided by the cues in the P treatment 
(N* models), different parental Priors generated similar ‘step 
up’ patterns, in which the offspring estimates for the NN 
and PP groups differed from one another, and the estimates 
for the PN and NP groups were intermediate between them 
(Fig. 1). The similarity of the patterns for different parental 
Priors occurred because when the information provided by 
both the P and N treatments was reliable, the cumulative 
effects of those experiences across two generations were 
strong enough to outweigh most effects of the parental Pri-
ors on the results. The intermediate estimates for the NP 
and PN treatments occurred because when the likelihood 
function for the parental experience was the mirror-image 
of the likelihood function for the offspring experience, the 
most extensive area of overlap between the two likelihood 
functions (i.e., the values of the state which were possible 
given both experiences) occurred for intermediate values of 
the state (compare Online Fig. 1a, b). The differences among 
the treatment groups in offspring estimates were most pro-
nounced when the cues in both the P and N treatments were 

highly reliable (Fig. 1a), but were also apparent even when 
both cues were weakly reliable (Fig. 1b).

N‑ models

When conditions in the N treatment provided less reliable 
information than those in the P treatment (N- models), the 
patterns generated were strongly dependent on the parental 
Priors (Fig. 2). For any parental Prior, the estimates for the 
NN group at the end of the experiment were the same as the 
estimates of the state indicated by the parental Prior at the 
beginning of the experiment. This is because we assumed 
that conditions in the N treatment provided no information 
about the state. In this situation, the parent’s initial esti-
mate of the value of the state was maintained across both 
generations.

Across different parental Priors, the difference between 
the offspring estimates for the NN and the PP groups 
depended on the extent to which the initial estimate of the 
value of the state provided by the parental Prior differed 
from the value of the state indicated by the cues in the P 
treatment. Recall our assumption that the cues from the 
predator in the P treatment indicated that the value of the 
state of the environment is high. In that case, the difference 
between the offspring estimates for the NN and PP groups 
was most pronounced when the parental Prior and the cues 

Fig. 2   N- models; different cue reliabilities. In "N- models", condi-
tions in the N treatment provide less reliable information than condi-
tions in the P treatment. a Information provided by the P treatment is 
highly reliable, modelled by a cumulative likelihood function with a 
shape indicated by α = 8, β = 1; information provided by the N treat-

ment is unreliable, and is modelled by a uniform distribution (α = 1, 
β = 1). b Information in the P treatment is weakly reliable (likelihood 
modelled by α = 2, β = 1; information provided by the N treatment is 
modelled by a uniform distribution (α = 1, β = 1)
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in the P treatment indicated very different values of the state, 
i.e., when the parental Prior was low (Prior = 0.1, Fig. 2). 
Conversely, the difference between the offspring estimates 
for the NN and PP groups was minimal when the parental 
Prior was high (Prior = 0.9), i.e., when the parental Prior and 
the cue indicated similar values of the state. These results 
were due to a basic feature of Bayesian updating, the ‘dis-
crepancy rule’. The discrepancy rule specifies that changes 
in an individual’s estimate of the value of a state of the envi-
ronment as a result of a given experience will be positively 
related to the discrepancy between the estimate of the value 
provided by its prior distribution and the estimate of the 
value provided by the likelihood function for that experience 
(see Stamps et al. 2018; Stamps and Frankenhuis 2016)).

When the parental Priors had low-to-intermediate mean 
values, the N- models generated a ‘jump-up’ pattern, in 
which the offspring estimates for the NN group were dif-
ferent from those of the other three groups (PN, NP, and 
PP), whose estimates were similar, but not identical, to one 
another (Fig. 2). The jump-up pattern occurred because in 
Bayesian updating, the effects of sequential exposures to the 
same cue on an individual’s estimate of the value of the state 
of the environment are non-additive: initial exposure to a cue 
results in more change in an individual’s estimate than do 
subsequent exposures to the same cue (Stamps and Krishnan 
2014a, b). As a result, one dose of exposure to the cue in a P 
treatment (in either the parental or the offspring generation) 
generated estimates of the value of the state of the environ-
ment that approached the estimate generated by two doses 
to the cue (in both the parent and the offspring generation).

Comparison of the results of N- models with different 
levels of reliability for the P treatments indicates that the 
difference in the reliability of the information provided by 
the P versus the N treatments was largely responsible for the 
patterns observed. Although the jump-up pattern was still 
detectable when the information provided by the P treatment 
was only slightly more reliable than that for the N treatment 
(Fig. 2b), the differences among the four treatment groups in 
their estimates were less pronounced in this situation. These 
results suggest that jump-up patterns would be most strongly 
expressed when the cue in the P treatment provided highly 
reliable information about a state of the environment, but 
the absence of the cue in the N treatment provided little or 
no information about the same state.

Discussion

Our results indicate that assumptions about the informa-
tion that is provided by the absence of particular cues in 
experimental studies of phenotypic plasticity can have major 
effects on differences among treatment groups in the infor-
mation-states of the subjects at the end of those experiments. 

We explored this topic using models designed to mimic fully 
factorial empirical studies of TWP (trans- and within-gener-
ational plasticity) with four treatment groups: both parents 
and offspring are exposed to cues from predators (PP), nei-
ther are exposed to those cues (NN), or one of the two are 
exposed to those cues (NP, NP). We then asked whether, 
and if so how, different assumptions about the information 
provided by the control (N) treatments in this type of experi-
ment would affect offspring estimates of the value of a state 
of the environment at the end of the experiment. Based on 
previous empirical and theoretical studies of the effects of 
different types of cues from predators on phenotypic plastic-
ity (see "Introduction"), we assumed that exposure to cues in 
the P treatment always provides reliable information about 
the state of the environment (e.g., predator density). We then 
asked whether and how differences in the reliability of the 
information provided by the absence of cues from preda-
tors in the N treatment would affect the differences among 
the four treatments in offspring estimates of the state of the 
environment.

When the absence of cues from predators in the con-
trol (N) treatment provided information as reliable as the 
presence of those cues in the P treatment (N* models), we 
observed a ‘step up’ pattern, in which the offspring’ final 
estimates of a state related to predation were most different 
for the NN and PP groups, and the estimates for the PN and 
NP groups were intermediate between them. These results 
were robust in the face of variation in parental Priors and 
cue reliability. These patterns fit our intuitive sense of what 
we might expect to see in experimental studies of TWP, e.g., 
the effects of zero, one or two ‘doses’ of exposure to the 
same cue on the offspring’ information-state appeared to be 
approximately additive.

In contrast, when the absence of cues from predators in 
the N treatment provided much less reliable information than 
the presence of those cues in the P treatment (N- models), 
the results were more complicated and less intuitive. In this 
case, the results strongly depended on the parent’s initial 
estimate of the value of the state of the environment, mod-
elled here by the parental Prior. When the parent’s initial 
estimate of the value of the state was different from the value 
of the state indicated by the cues in the P treatment, we 
observed a ‘jump up’ pattern, in which offspring estimates 
for the NN treatment were different than the offspring esti-
mates for the other three treatments (PN, NP, and PP), all 
of which were similar to one another. In contrast, when the 
parental Prior and the cues in the P treatment indicated a 
similar value of the state, all four treatment groups ended up 
with similar estimates of the state. The jump-up pattern was 
more strongly expressed when the cues in the P treatment 
were highly reliable than when they were weakly reliable.

These results suggest that to the extent that parental Priors 
vary among populations as a result of differences in parental 
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genes, inherited epigenetic factors, or grand-parental effects, 
the results of experiments with non-informative controls 
might vary as a function of the population from which the 
parents were collected. For instance, we would expect par-
ents collected from populations in which a lethal predator 
nearly always overlaps spatially with individual prey to not 
exhibit much, if any, plasticity in response to an attack by 
that predator in the P treatment, since, in that case, the expe-
rience in the P treatment would simply confirm the estimate 
of the state provided by the parental Priors. In contrast, our 
results suggest that jump-up patterns for information-states 
(and possibly also phenotypes, see above) would be more 
likely if parents were collected from populations in which 
a lethal, site-faithful predator only occasionally overlapped 
spatially with the prey, because in the latter case, the parent’s 
initial estimate of the probability of being attacked by that 
predator would be contradicted by the experience in the P 
treatment.

As was described in the Introduction, the N* models were 
designed to mimic experiments in which parents, offspring, 
both or neither were continuously exposed to cues such as 
kairomones from predators from birth to maturity. Thus, 
based on information-updating alone, when investigators 
use this protocol, we would expect antipredator trait values 
in the four treatment groups to differ most for the NN and 
PP groups, with intermediate trait values for the NP and PN 
groups. In turn, deviations from these patterns would sug-
gest the need to invoke additional assumptions, including 
assumptions about factors other than information-updating, 
to explain the results.

To date, several studies of TWP have used experimental 
protocols that conform to those assumed in the N* mod-
els: parents and offspring exposed to the same concentra-
tion of kairomones from predators for the same period of 
time (birth to maturity), after which antipredator traits in 
the offspring are measured in four treatment groups (NN, 
NP, PN, and PP). In one of these, a classic study of Daphnia 
cucullate, the authors reported a step-up pattern, in which 
the antipredator trait values for all four treatment groups 
significantly differed from one another: PP > NP > PN > NN 
(Agrawal et al. 1999). However, other patterns have been 
reported in studies of a snail, Physa acuta, which used simi-
lar experimental designs. Thus Luquet and Tariel (2016) 
reported a pattern of PP, NP > PN > NN for two antipreda-
tor traits (Luquet and Tariel 2016; Tariel, unpublished 
data), while Beaty et al. (2016) reported that exposure to 
cues in parents, but not offspring, affected crush-resistance 
(PP, PN > NP, NN), whereas exposure to offspring, but not 
parents, affected antipredator behavior (PP, NP > PN, NN). 
Beaty et al. (2016) explained their results by suggesting that 
transgenerational plasticity might be more common for slow-
developing traits or traits with early developmental windows 
(e.g., morphological traits such as crush-resistance), whereas 

within-generational plasticity might be more common for 
behavioral or other temporally labile traits.

Thus far, only one empirical study of TWP in response 
to cues from predators has used a design comparable to that 
mimicked by the N- models. Stein et al. (2018) exposed 
three-spined sticklebacks (Gasterosteus aculeatus) to sim-
ulated attacks by a model predator. Parental males were 
chased once by a model sculpin for 2 min when they were 
caring for their young, their offspring were chased for 1 min 
per day for 7 days. Then, several traits, including antipreda-
tor behavior, were scored when the juveniles were 2 months 
old. Stein et al. (2018) were surprised to find a ‘jump-up’ 
pattern for all of the traits which they measured (NN ≠ PN, 
NP, PP). However, based on the results of the current study, 
we would expect this pattern based on information-updating 
alone. Recall that if the offspring in two or more treatment 
groups end up with the same (or very similar) estimates of 
a state of the environment, we would expect the offspring 
in those groups to express comparable values of any traits 
affected by those estimates. Hence, if the offspring estimates 
of a state followed a strong jump-up pattern, one would 
also expect to see a jump-pattern in trait values related to 
those estimates, without any need to invoke assumptions 
about other factors that might have affected the trait values 
expressed in the different treatment groups.

More generally, these results suggest that biologists stud-
ying phenotypic plasticity in response to information-only 
cues might want to consider the information provided by 
the absence as well as the presence of those cues. As was 
described above, for some states of the environment, the 
absence of particular cues may provide information as reli-
able as their presence, while for other states of the environ-
ment, the absence of particular cues may provide little or no 
information to developing organisms. These points apply 
to any information-only cue, not just those related to risk 
of predation.

For instance, experiments with insects and spiders have 
shown that exposing late-stage juveniles to auditory, chemi-
cal, visual, vibratory, or other stimuli from breeding adults 
can affect a wide range of reproductive behaviors after those 
juveniles mature (reviews in Dion et al. 2019; Kasumovic 
and Brooks 2011). It is widely assumed that one reason 
that cues from adults might affect behavioral development 
is that those cues provide juveniles with information about 
the density of potential mates or reproductive competitors 
they are likely to encounter after they mature and join the 
breeding population (Bailey et al. 2010; Fowler-Finn and 
Rodriguez 2012; Rebar et al. 2016; Stoffer and Uetz 2015). 
In that case, a ‘control’ treatment in which juveniles were 
reared in the absence of cues from adults might also provide 
reliable information about the same state of the environment, 
namely indicating that the density of mates or competitors 
was low at the current locality.
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However, stimuli from breeding adults may provide juve-
niles with information about aspects of the local breeding 
environment besides density. For instance, female treehop-
pers (Enchenopa binotata) and crickets (Ephippiger diurnus) 
exposed as juveniles to the signals of highly attractive males 
were more selective in response to male signals after matu-
rity than females exposed as juveniles to the signals of less 
attractive males (Fowler-Finn and Rodriguez 2012; Rebar 
et al. 2019). Similarly, female wolf spiders (Schizocosa 
ocreata) exposed as juveniles to the courtship displays of 
males with small leg-tufts were more receptive after matu-
rity to males with small tufts than were females exposed as 
juveniles to the courtship displays of males with large tufts 
(Stoffer and Uetz 2016). These and similar studies suggest 
that arthropods might use cues from adult conspecifics prior 
to maturity to update their estimates of the types of mates or 
competitors which they were likely to encounter after matu-
rity. However, a control treatment in which females were 
reared in the absence of cues from adult males would not 
provide any information about these states of the environ-
ment. Instead, juveniles reared in the absence of cues from 
adults would presumably have to rely on information from 
their ancestors (in Bayesian terms, their naïve priors) to esti-
mate the types of mates or competitors which they might 
encounter after maturity. Hence, in experimental studies of 
the WGP of reproductive behavior in response to cues from 
adult conspecifics, a control treatment in which juveniles 
were reared in the absence of social cues could provide 
information about some states of the environment relevant 
to the development of adult reproductive behavior (e.g., the 
density of potential mates or competitors at the current local-
ity) but not others (e.g., the distribution of different types of 
mates or competitors at the current locality).

Until recently, theoretical and empirical treatments com-
paring TGP and WGP have focused on whether they are 
different ways of achieving the same outcome (e.g., Bon-
duriansky et al. 2012; Uller 2008), the conditions under 
which we expect either form of plasticity to evolve (e.g., 
Ezard et al. 2014; Hoyle and Ezard 2012), and whether they 
are produced via the same or different mechanisms (e.g., 
Hales et al. 2017). However, theory indicates that a given 
organism can receive information that affects their develop-
ment from a variety of sources, including their own expe-
riences, the experiences of their parents, and their genes 
(Dall et al. 2015; Leimar et al. 2006; Leimar and McNamara 
2015; McNamara et al. 2016), which raises intriguing ques-
tions about how information from different sources might 
combine to affect offspring estimates of conditions in their 
environment (Stamps and Frankenhuis 2016; Stamps and 
Krishnan 2014a). Here, we have considered one such ques-
tion: how assumptions about the information provided by the 
absence of cues in a control group might affect the results 
of empirical studies of the combined effects of parental and 

offspring experiences on offspring development. Our results 
suggest that theoreticians and empiricists alike might benefit 
from paying more attention to the reliability of the informa-
tion provided by the absence of particular cues in studies of 
WGP, TGP, and TWP.
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