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Embryonic exposure to steroids often leads to long-term phenotypic effects. It has been hypothesized
that mothers may be able to create a steroid environment that adjusts the phenotypes of offspring to
current environmental conditions. Complicating this hypothesis is the potential for developing
embryos to modulate their early endocrine environment. This study utilized the threespined stickleback
(Gasterosteus aculeatus) to characterize the early endocrine environment within eggs by measuring
four steroids (progesterone, testosterone, estradiol, and cortisol) of maternal origin. We then examined
how the concentrations of these four steroids changed over the first 12 days post fertilization (dpf).
Progesterone, testosterone, estradiol, and cortisol of maternal origin could be detected within
unfertilized eggs and levels of all four steroids declined in the first 3 days following fertilization. While
levels of progesterone, testosterone, and estradiol remained low after the initial decline, levels of
cortisol rose again by 8 dpf. These results demonstrate that G. aculeatus embryos begin development
in the presence of a number of maternal steroids but levels begin to change quickly following
fertilization. This suggests that embryonic processes change the early endocrine environment and
hence influence the ability of maternal steroids to affect development. With these findings, G.
aculeatus becomes an intriguing system in which to study how selection may act on both maternal
and embryonic processes to shape the evolutionary consequence of steroid-mediated maternal
effects. J. Exp. Zool. 323A:422-429, 2015. © 2015 Wiley Periodicals, Inc.
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IN OVO STEROID LEVELS DURING DEVELOPMENT

For vertebrates, conditions experienced during embryonic devel-
opment have long-lasting effects on phenotypic traits. Studies
have shown that the early endrocine environment has an
important influence on development in vertebrates (mammals:
(Gerall et al., ’92), birds: (Balthazart and Adkins-Regan, 2002),
reptiles: (Lance, '97), amphibians (Hayes, '98), and fish: (Devlin and
Nagahama, 2002)). More specifically, embryonic steroid exposure
can produce organizational effects that are permanent such that
the effects remain even after the steroid signal is no longer present
(Arnold, 2009; Pheonix et al., 1959). The bulk of what we know
about the phenotypic consequences of steroid exposure comes
from studies that exogenously manipulate steroid levels and
characterize the phenotypic effects. Historically, research has
tended to focus on the maladaptive or pathological effects of
abnormal steroid exposure (Berenbaum and Beltz, 2011). An
offshoot of this research began with the discovery that environ-
mental/exogenous chemicals could also produce effects that were
similar to abnormal steroid exposure (Colborn et al., ’93). Together
these studies highlight just how important regulation of steroid
signaling is to embryonic development.

A major component of the steroid environment during
development comes from maternally derived steroids. Whether
placental or oviparous, all vertebrate embryos develop in the
presence of maternally derived steroids (Paitz and Bowden, 2010).
In placental vertebrates, embryos are subject to steroids present in
maternal circulation (Diczfalusy, ’64) while embryos of oviparous
vertebrates are subject to steroids present in the egg at the time of
oviposition (Groothuis et al., 2005). Upon the discovery that
variation in levels of maternal steroids were related to phenotypic
variation in offspring (Schwabl, '93), researchers began to test the
hypothesis (primarily in birds) that females could adaptively
adjust offspring phenotypes with differential allocation of
maternal steroids (Gil, 2008; Groothuis et al., 2005; Groothuis
and Schwabl, 2008; Sheriff and Love, 2013). An assumption for
many of the early studies investigating the potentially adaptive
consequences of maternal steroid exposure was that the embryo
was a passive responder to maternal steroids (Moore and
Johnston, 2008; Williams, 2012). Recent work (Paitz et al.,
2011; Paitz and Bowden, 2008; von Engelhardt et al., 2009) in
conjunction with a re-examination of previous work (Diczfalusy,
'64; Gonzalez et al., '83; Levitz, '66; Parsons, '70), has shown that
vertebrate embryos are capable of metabolizing maternally
derived steroids and modulating levels of maternal steroids to
which they are exposed. In placental vertebrates, steroids are
metabolized via a variety of pathways as they pass from maternal
circulation into the placenta and subsequently into fetal
circulation (Diczfalusy, '64; Painter and Moore, 2005). The extra
embryonic membranes of oviparous vertebrates are also capable
of metabolizing steroids of maternal origin (Albergotti et al.,
2009; Paitz and Bowden, 2008). A major implication of these data
is that the interplay of maternal and embryonic processes dictates
the level of maternal steroids to which the embryo is exposed and
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thus the phenotypic consequences of maternal steroid exposure.
So to fully understand the evolutionary consequences of steroid-
mediated maternal effects, we must understand both maternal
and embryonic processes.

Teleost fishes have long served as a model taxa for
investigating the phenotypic consequences of early steroid
exposure with a focus on the effect of exogenous steroids on
sex determination (Yamamoto, '69). Although not always framed
within the context of steroid-mediated maternal effects, a
number of studies have characterized levels of maternally
derived steroids in fish eggs. Maternally derived steroids are
detectable in unfertilized fish eggs with levels dropping very
rapidly following fertilization (progesterone- (coho salmon,
Oncorhynchus kisutch, Feist et al., 1996); estradiol- (tilapia,
Oreochormis nilotica), Rothbard et al., '87), (Coho salmon,
'90), (rainbow trout,
Oncorhynchus mykiss, Feist and Schreck, '96), (tilapia, Oreo-

Oncorhynchus kisutch, Feist et al,

chormis nilotica, Hines et al., '99); testosterone- (tilapia,
Oreochormis nilotica, Rothbard et al.,, '87), (coho salmon,
'90), (rainbow trout,
Oncorhynchus mykiss, Feist and Schreck, '96), (tilapia, Oreo-
chormis nilotica, Hines et al., '99), (medaka, Oryzias latipes,
Iwamatsu et al., 2006); cortisol- (Japanese flounder, Paralichthys

Oncorhynchus kisutch, Feist et al,

olivaceus, de Jesus et al., '91), (tilapia, Oreochormis nilotica,
Hwang et al., '92), (Asian seabass, Lates calcarifer, Sampathku-
mar et al., '95), (rainbow trout, Oncorhynchus mykiss, Barry et al.,
'95), (yellow perch, Perca flavescens, Jentoft et al., 2002),
(zebrafish, Danio rerio, Alsop and Vijayan, 2008), (rainbow
trout, Oncorhynchus mykiss, Fuzzen et al., 2011)). This decline in
steroid concentrations is thought to be due to embryonic steroid
metabolism since fish embryos possess a number of metabolic
enzymes (Antila, '84; Hines et al., '99; Khan et al., '97a, b; Liet al.,
2012; Petkam et al., 2002; Rowell et al., 2002;). While the
metabolism of maternal steroids by developing embryos may
produce inactive metabolites in some situations, it is possible that
the metabolites of maternal steroids may themselves be bio-
logically active or could serve as precursors for steroid
production later in development (Paitz and Bowden, 2011).
Thus, the metabolism of maternal steroids by no means negates
the possibility of steroid-mediated maternal effects. Indeed
steroid-mediated maternal effects have been documented in a
number of fish species (Auperin and Geslin, 2008; Burton et al.,
2011; Eriksen et al., 2006; Eriksen et al., 2007; Li et al., 2010, 2011;
McCormick, "98, '99). Overall, the work in fishes suggests that,
similar to other vertebrates, both maternal and embryonic
processes may be subject to selective pressures that shape the
evolutionary consequences of steroid-mediated maternal effects.

Accumulating evidence suggests that steroid-mediated ma-
ternal effects may influence phenotypic variation in the
threespined stickleback (Gasterosteus aculeatus). Subjecting
female sticklebacks to simulated predation risk increases the
cortisol content within the eggs (Giesing et al., 2011). This
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maternal predator exposure also influences several traits in her
offspring such as egg size (Giesing et al., 2011), metabolic rate
(Giesing et al., 2011), learning (Roche et al., 2012), behavior
(Giesing et al., 2011), stress response (Mommer and Bell, 2013),
and survival (McGhee et al., 2012) suggesting that the increase in
egg cortisol levels may be responsible for mediating the effects of
maternal stress. G.aculeatus is renowned for geographic
variation in behavior and morphology related to environmental
factors (Bell and Foster,’94). These populations also differ in a
variety of female life-history traits such as egg size and clutch
size (Baker et al., 2008). At this point it is unknown what role
maternal effects may play in the production/maintenance of this
variation, but taken together, the evolutionary history of
G. aculeatus creates a powerful system in which to study the
evolutionary potential of steroid-mediated maternal effects.
The first objective of this study was to quantify levels of
maternally derived progesterone, testosterone, estradiol, and
cortisol in clutches of G. aculeatus eggs. We chose to quantify
one steroid from each of the four major classes of vertebrate steroids
to provide a more complete picture of the early endocrine
environment in this species. While cortisol has received the most
attention as a mediator of maternal effects in fish, studies in other
oviparous vertebrates suggest that progesterone (Paitz and Casto,
2012), testosterone (reviewed by Groothuis and Schwabl, 2008), and
estradiol (Bowden et al., 2000; Williams et al., 2005) may also
influence embryonic development. The second objective of this
study was to examine how these levels change throughout
development. Relative to most fish species that have been used to
characterize the endocrine environment during development, there
is a relatively brief period of time between fertilization and hatching
in G. aculeatus. This rapid development may constrain the
opportunity for embryos to modulate maternal steroid levels prior
to the initiation of processes like neurogenesis. We predicted that
G. aculeatus eggs would contain all four steroids and that these
levels would decline during development as has been shown in other
fish species. Understanding how the early endocrine environment
changes during development is vital to identifying processes that
underlie the effect of maternal steroids on offspring development.

MATERIALS AND METHODS

Sample Collection

Adult sticklebacks were collected from a natural population in
Navarro Creek, CA, USA. Fish were held on a natural photoperiod
at 20°C and fed frozen bloodworms, mysis shrimp, cyclop-eeze,
and brine shrimp ad libitum. Males were housed singly in small
tanks (36L x33W x 24Hcm, 26L), supplied with nesting
material (algae), sand, and visual access to neighbors. After a
male completed his nest, a female was introduced and the pair
was allowed to spawn. We retrieved eggs within 12hr of
fertilization and artificially incubated them in a cup with a mesh
screen bottom and bubbling airstone positioned under each cup.

PAITZ ET AL.

Eggs that were not developing were removed once detected to
prevent fungal growth. For the unfertilized group, eggs were
collected by gently squeezing the eggs from gravid females. In
total, 36 clutches of eggs were collected and sampled at seven
different points of development. The number of clutches collected
at each sampling period ranged from three to seven. Whole
clutches were sampled as unfertilized eggs or after a specific
number of days following fertilization (3,4,6,7,8, or 12 days
respectively) such that every sample represented an entire clutch
and no females were used more than once. At the time of
sampling, eggs or larvae were snap frozen on dry ice and stored at
—80°C until steroid quantification.

Steroid Quantification

To quantify steroids, tissues were weighed and homogenized with
a glass potter-elvehjem homogenizer. From each homogenate,
two 20mg aliquots were collected. One aliquot was used to
quantify cortisol via enzyme-linked immunosorbent assay
(ELISA) (Enzo Life Sciences, Plymouth Meeting, PA, USA) and
the other aliquot was used to quantify progesterone (PROG),
testosterone (T), and estradiol (E,) via radioimmunoassay (RIA).
This RIA has previously been used to investigate how levels of
PROG, T, and E, change in bird (Paitz et al., 2011) and reptile (Paitz
and Bowden 2009) eggs during development. The RIA aliquot
also received a 2000 cpm tracer of PROG, T, and E, to calculate the
recovery of each steroid. The tritiated steroids NET-381 (PROG),
NET 553 (T), and NET 517 (E,) were purchased from PerkinElmer
(Boston, MA, USA). Each aliquot was added to 1 mL distilled H,0
and steroids were extracted twice with 3 mL diethyl ether that was
then dried under nitrogen gas (Paitz and Bowden, 2009).

For the quantification of progesterone, testosterone, and
estradiol, steroids were fractionated via celite chromatography
using hormone-specific ethyl acetate:isooctane ratios (PROG
= 2%, T=200%, and E, = 40%) (Paitz and Bowden, 2009). Steroid
concentrations were measured in competitive binding RIAs with a
standard curve that ranged from 3.91 to 1000 pg for PROG and 1.95
to 500 pg for T and E,. Average recovery was 58% for PROG, 63%
for T, and 619% for E,_ The intra-assay coefficients of variation were
8% for PROG, 10% for T, and 8% for E,. Antibody 20R-PRO53w
(Fitzgerald Industries, Acton, MA, USA) was used to quantify
PROG and had a reported cross reactivity of 50% with prenenolone
and less than 1% with all other reported steroids. Antibody 20R-
TRO18w (Fitzgerald Industries) was used to quantify T and had a
reported cross reactivity of 60% with 5alpha-dihydrotestosterone,
< 5% with other androgenic steroids, and less than 0.05% with
estradiol and all other reported steroids. Antibody 7010
(Biogenesis, Kingston, NH, USA) was used to quantify E, and
had areported cross reactivity of 14% with estrone, 5% with estriol,
and less than 0.01% with all other reported steroids.

For the quantification of cortisol the other 20 mg aliquot of
homogenate from each sample was measured in duplicate via
competitive ELISA (Giesing et al., 2011). The antibody used in this
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IN OVO STEROID LEVELS DURING DEVELOPMENT

assay is reported by the manufacturer to have a sensitivity of
56.72 pg/mL and a 27.7% cross reactivity with corticosterone, 4.0%
with 11-deoxycortisol, 3.6% with progesterone, and 0.1% or less
with testosterone, androstenedione, cortisone, and estradiol.
Thawed samples were centrifuged to isolate the supernatant, diluted
with assay buffer, and divided in half to be measured as duplicates.
Following the manufacturer’s protocol, 96-well ELISA plates were
prepared and absorbance read at 405 nm for each sample (Enzo Life
Sciences) on a FilterMax F3 microplate reader (Molecular Devices,
Sunnyvale, CA, USA) and absorbance data averaged across
duplicate samples with Multi-Mode Analysis software (Molecular
Devices version 3.4.0.25). Blank-corrected, total-activity-corrected
optical densities were converted to “percent bound” for each sample,
and converted to cortisol concentration (ng/mL) by applying a four-
factor polynomial standard curve derived from each plate’s
standards. Sample values were multiplied by their dilution factor
to obtain the cortisol concentration of the original, undiluted egg
and tissue 20 mg homogenates. Samples that fell above the curve
(n = 4) were assigned the value of the most concentrated standard.
The intra-assay coefficient of variation was 1.7%.
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Statistical Analysis

An ANOVA was used to examine whether steroid concentrations
changed during development. Concentrations of all four steroids
were log transformed prior to analysis in order to normalize the
data. For each steroid, we performed a one-way ANOVA using
day of development as a fixed factor. Post hoc comparisons
(Tukey’s HSD) were used to compare differences between days of
development. All statistical tests were performed in SAS v. 9.3
(SAS Institute, Cary, NC, USA).

RESULTS

Maternally derived progesterone, testosterone, estradiol, and
cortisol could be detected in unfertilized G. aculeatus eggs. The
mean concentration (+ SE) in unfertilized eggs was 9.2 + 2.1 ng/g
for PROG, 0.33 +.03ng/g for T, 0.62+.12ng/g for E,, and
12.6 £ 1.6 ng/g for cortisol. When examining how these
concentrations changed during development, levels of E, and
PROG declined by day three and six respectively and did not
change thereafter (Fig. 1). Cortisol levels also declined early in
development but increased a few days after hatching (Fig. 1).
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25
20
15

-
o w o

Unfert.
eggs
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Figure 1. Mean concentrations of steroids (& SE) within G. aculeatus eggs and larvae over the first 12 days following fertilization (dpf).
Groups not sharing a letter are significantly different (P < 0.05). Asterisks indicate a significant difference when the analysis is restricted to
unfertilized eggs and 3 dpf. Sample sizes: Unfert=7, 3 dpf=5, 4 dpf=5, 6 dpf =5, 7 dpf=5, 8 dpf=>5, 12 dpf=4.
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Levels of testosterone did not change during development.
Interestingly, if the analyses are restricted to compare only
unfertilized eggs and those 3dpf, concentrations of all four
steroids decline significantly (all P < 0.025)

DISCUSSION

We demonstrated that G. aculeatus eggs contain maternally
derived steroids from all four classes of vertebrate steroids at the
time of oviposition. Progesterone, testosterone, estradiol, and
cortisol were all detectable in unfertilized eggs with concen-
trations of PROG and cortisol being relatively high compared to
T and E,. When focusing the analysis on the first 72 hr post-
fertiliztation, concentrations of all four steroids declined. This
decline is consistent with reports from other fish species that
show concentrations of steroids within eggs decline following
fertilization (progesterone- (Feist et al., '90); estradiol- (Feist
et al., '90; Feist and Schreck, '96; Hines et al., '99; Rothbard et al.,
’87); testosterone- (Feist et al., '90; Feist and Schreck, '96; Hines
et al., '99; Iwamatsu et al., 2006; Rothbard et al., '87); cortisol-
(Alsop and Vijayan, 2008; Barry et al., '95; de Jesus et al., '91;
Fuzzen et al., 2011; Hwang et al., '92; Jentoft et al., 2002;
Sampathkumar et al., '95). While the fate of these maternal
steroids remains to be deciphered, metabolism is a likely plausible
candidate as numerous studies have demonstrated that fish
embryos possess a suite of enzymes capable of metabolizing
numerous steroids (Antila, '84; Hines et al., '99; Khan et al., '97a,
b; Li et al., 2012; Petkam et al., 2002; Rowell et al., 2002; Yeoh
et al, '96). It has been hypothesized that the embryonic
metabolism of modulation of steroid levels buffers the process
of gonadal differentiation from the effects of maternal steroids
(Feist et al., '90). Our data are consistent with this hypothesis as
gonadal differentiation in G. aculeatus begins around 12 dpf
(Lewis et al., 2008), long after the drop in maternal steroid levels.
Despite the relatively short period between oviposition and
gonadal differentiation, maternal steroids do not appear to be
present during this process.

The metabolism of maternal steroids would not necessarily
negate the ability of these steroids to influence embryonic
development as a number of experiments have demonstrated
steroid mediated maternal effects (Auperin and Geslin, 2008;
Burton et al., 2011; Eriksen et al., 2006; Eriksen et al., 2007; Li
et al., 2010, 2011; McCormick, '98, '99). It is possible that these
steroids are eliciting an effect prior to metabolism as fish embryos
are capable of responding to steroids within 48 hr of fertilization
(Li et al., 2012; Zucchi et al., 2012). Conversely, the metabolites of
maternal steroids may be capable of influencing offspring
phenotypes (Paitz and Bowden, 2011). These scenarios are not
mutually exclusive. In addition to metabolism, processes that
result in the steroids exiting the egg may account for the observed
decline in steroid levels. Passive diffusion and active efflux of
steroids may also play a role in the decline of steroid levels.
Indeed, ATP-binding cassette (ABC) transporters are capable of
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transporting a wide range of chemicals from cells and have
recently been shown to be active during the early stages of
development of zebrafish (Danio rerio) embryos (Fischer et al.,
2013). Much more work is needed to determine which
mechanisms may be operating to regulate the exposure of
embryos to maternal steroids. Deciphering the mechanism(s)
underlying the effects of maternal steroids is important to
understanding the evolutionary consequences of steroid-medi-
ated maternal effects. If embryos are capable of modulating the
effects, then selection could act on both maternal and embryonic
processes to shape how maternal steroids influence phenotypic
variation. This could create a situation of parent-offspring
conflict if the interests of mother and offspring do not match
(Muller et al., 2007).

In addition to the observed decline in steroid concentrations
early in development, levels of cortisol dramatically increased
soon after hatching before falling again. Cortisol levels have also
been shown to increase after hatching in zebrafish (Alsop and
Vijayan, 2008) and rainbow trout (Auperin and Geslin, 2008;
Barry et al.,, '95; Fuzzen et al., 2011), which is thought to be the
result of the embryonic HPI axis beginning to produce cortisol. At
this point, it is unknown whether maternal contributions
influence this cortisol production. PROG could potentially serve
as a precursor for cortisol production but the fact that PROG does
not also increase during this period suggests that PROG is not
involved in the pathway leading to this cortisol production. The
dynamic nature of cortisol levels in this study highlight the role of
the embryo in modulating aspects of the early endocrine
environment.

Operating under the premise that G. aculeatus embryos are
capable of modulating their exposure to maternal steroids, this
species provides a unique opportunity to investigate how
selective pressures may shape maternal and embryonic processes
related to the effect of maternal steroids on phenotypic variation.
The recent evolutionary history of G. aculeatus created a
situation where populations inhabiting different post-glacial
habitats exhibit a substantial amount of behavioral and
morphological variation thought to be tied to population
differences in local ecology (Bell and Foster, '94). Since ecological
factors such as population density (Pilz and Smith, 2004), human
disturbance (Bertin et al., 2008), predation pressure (Gieising
et al., 2011), day length (Schwabl, 96), maternal condition (Hegyi
etal., 2011; Safran et al., 2008), and maternal social status (Muller
et al., 2002) have all been shown to influence maternal steroid
levels in the eggs of oviparous vertebrates, it is possible that
steroid-mediated maternal effects may account for some of the
observed population differences in phenotypes in G. aculeatus.
Experimental work aimed at elucidating population differences
in maternal and embryonic processes related to maternal steroid
exposure will facilitate our understanding of the role these
maternal effects may play in evolutionary processes. The role of
maternal effects in evolutionary processes may take on even
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greater importance when examining the response of species to
rapid environmental change (Bonduriansky et al., 2012). Along
the lines of changing environments, characterizing the mecha-
nisms underlying the decline in maternal steroid concentrations
has possible implications for studies of endocrine disruption.
G. aculeatus has been used as a model system to study how
endocrine disrupting chemicals (EDCs) elicit their effects (Bell,
2001; Bell, 2004; Hogan et al., 2008; Pottinger et al., 2002). It has
recently been hypothesized that some EDCs may elicit their
effects by inhibiting the metabolism of maternal steroids such
that the observed effects are due to an increased exposure of
endogenous steroids that are present in the egg (Clairardin et al.,
2013). By demonstrating that G. aculeatus eggs contain a variety
of maternally derived steroids and that levels decline early
following fertilization, it suggests that embryos could
be disrupted by exposure to various steroids depending on the
susceptibility of metabolic pathways to inhibition by EDCs. More
work is required to characterize the metabolic fate of maternal
steroids in G. aculeatus and determine what effects maternal
steroids have on embryonic development.

The data from this study demonstrate that G. aculeatus eggs
contain a number of maternal steroids at the time of oviposition
that may be capable of influencing embryonic development.
Concentrations of these steroids decline rapidly thereby high-
lighting the dynamic nature of the endocrine environment during
development. While the precise role of G. aculeatus embryos in
modulating steroid levels remains unknown, it is likely that
developing embryos play an active role in regulating the early
endocrine environment. Understanding the processes (both
maternal and embryonic) involved in steroid-mediated maternal
effects (or lack thereof) has important implications for the
understanding evolutionary potential of these effects. Addition-
ally, disruption of these processes may also have important
consequences for the developing embryo. Overall, G. aculeatus
provides a powerful system for addressing these questions related
to steroid-mediated maternal effects.
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