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Offspring from females that experience stressful conditions during reproduc-

tion often exhibit altered phenotypes and many of these effects are thought to

arise owing to increased exposure to maternal glucocorticoids. While embryos

of placental vertebrates are known to regulate exposure to maternal glucocorti-

coids via placental steroid metabolism, much less is known about how and

whether egg-laying vertebrates can control their steroid environment during

embryonic development. We tested the hypothesis that threespine stickleback

(Gasterosteus aculeatus) embryos can regulate exposure to maternal steroids via

active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h)

cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters

inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient

to prevent a transcriptional response of embryos to exogenous cortisol. Taken

together, these findings suggest that, much like their placental counterparts,

developing fish embryos can actively regulate their exposure to maternal corti-

sol. These findings highlight the fact that even in egg-laying vertebrates, the

realized exposure to maternal steroids is mediated by both maternal and

embryonic processes and this has important implications for understanding

how maternal stress influences offspring development.
1. Introduction
The physiological status of females during reproduction can produce long-lasting

effects on her offspring. For example, the exposure of females to adverse con-

ditions during pregnancy is associated with phenotypic effects on her offspring

such as altered growth, physiology and behaviour [1,2]. These maternal effects

are frequently referred to as ‘developmental programming’ [3], with some effects

being potentially adaptive [4,5], whereas others are likely maladaptive [6].

Mechanistically, many of the effects of maternal stress on offspring are thought

to arise as a result of increased exposure of offspring to maternally derived gluco-

corticoids [5]. Thus, to fully understand how maternal stress influences offspring

development, we need to understand how embryonic exposure to maternal

glucocorticoids is regulated.

In placental mammals, the placenta modulates foetal exposure to maternal

glucocorticoids by metabolizing glucocorticoids as they pass from maternal

circulation into foetal circulation. The enzyme primarily responsible for this

metabolism is 11b-hydroxysteroid dehydrogenase type II (11b HSD), as it

catalyses the inactivation of glucocorticoids [7] and results in an 80–90% metab-

olism of glucocorticoids as they cross the placenta [8,9]. This metabolic buffer

plays a vital role in modulating the effects of maternal stress as evidenced by

the number of effects that arise when this buffer is inhibited pharmacologically

[10], knocked out genetically [11] or overwhelmed with synthetic glucocorticoids

[12]. The idea that maternal glucocorticoids do not always reach developing off-

spring without first being metabolized suggests that some of the effects of

maternal stress on offspring development might occur without direct
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glucocorticoid exposure. Research aimed at untangling the

direct effects of glucocorticoid exposure from the indirect

effects that arise owing to glucocorticoid-mediated changes

in maternal physiology following stress demonstrate that

many of the effects on offspring do not require direct glucocor-

ticoid exposure [11]. Stress-induced changes in maternal

physiology, such as reduced sex steroid production and altered

lipid metabolism, may elicit effects on offspring development

even if glucocorticoids themselves do not reach the embryo

as an active form. Ultimately, the effects of maternal stress on

offspring are likely a combination of direct glucocorticoid

effects and indirect effects mediated by changes in maternal

physiology. This work on how maternal glucocorticoids influ-

ence offspring development highlights the vital role embryonic

processes play in modulating the effects of maternal steroids.

Until recently, it was generally thought that the embryos

of egg-laying vertebrates had minimal ability to regulate

exposure to maternally derived steroids that can accumulate

in lipid-rich eggs [13], but studies are now demonstrating

that these embryos also use metabolism to regulate their

exposure to maternal steroids [14]. Most of what we know

about how vertebrate embryos regulate their exposure to

maternal steroids implicates extraembryonic membranes,

including the placenta, as the most important tissues in this

process [15,16]. However, embryos of non-amniotic vertebrates

(fish and amphibians), which lack these extraembryonic

membranes [17], are also exposed to maternally derived

steroids (progesterone [18]; oestradiol [19]; testosterone [20];

cortisol [21–27]) and are sensitive to steroids [28,29]. Moreover,

despite lacking extraembryonic membranes, steroids decline

during development in fishes [18,30], which sets up the possi-

bility that fish embryos may be capable of modulating their

exposure to maternal steroids, even though they do not have

extraembryonic membranes.

In addition to metabolism, other embryonic processes

can be involved in regulating exposure to maternal steroids.

For example, mammals use specialized transport proteins

to actively transport steroids and their conjugates [31]. ATP-

binding cassette (ABC) transporters and solute carrier proteins

can use steroids and metabolites as substrates, thus the

expression of transporters can impact movement of these com-

pounds within the body [32]. Many of these transporters are

present within the placenta and their substrate specificity and

cellular distribution play a role in regulating which steroids

and conjugates are moved from maternal circulation, through

the placenta, and into foetal circulation (and vice versa) [31].

In fish, ABC transporters are considered the ‘first line

of defence’ against uptake of xenobiotics from the aquatic

environment [33]. This arises from that fact that ABC transpor-

ters are capable of transporting a wide variety of xenobiotics

and modulating toxicity by preventing exposure [34]. Recently,

ABC transporters have also been shown to play an important

role during embryonic development as they protect developing

fish embryos from a variety of exogenous chemicals present

in the water [35]. Taken together, the metabolism of mater-

nal steroids and the transport of steroids/metabolites are

likely to influence the exposure of developing embryos to

maternal steroids and subsequently influence how maternal

steroids impact development. Both of these processes have

been suggested to be vital, protecting developing embryos

from the potentially detrimental effects of increased glucocor-

ticoid exposure during maternal stress [36]. Here, we test the

hypothesis that embryos of non-amniotic vertebrates can
modulate their exposure to maternal glucocorticoids and

buffer themselves from the effects of maternal stress using

threespine stickleback (Gasterosteus aculeatus) as a model. We

examined the fate of maternally derived cortisol by treating

unfertilized eggs with tritiated cortisol and subsequently:

(i) characterized the movement of cortisol during early devel-

opment, (ii) tested for the presence of cortisol metabolites,

and (iii) examined the effect of inhibiting ABC transporters

on the movement of cortisol. Additionally, we used RNAseq

to test whether the embryonic transcriptional response to

increased levels of cortisol was similar to the transcriptional

response to maternal stress in sticklebacks [37].
2. Methods
(a) Animal collection and care
Adult sticklebacks were collected from Putah Creek, CA during

the spring of 2013 and 2014. Fish were transported to the Univer-

sity of Illinois, where they were housed in 37 l tanks in groups of

five to eight. Fish were held on a natural photoperiod at 208C and

fed frozen bloodworms, Mysis shrimp, cyclopeeze and brine

shrimp ad libitum. Once males exhibited reproductive mor-

phology (red throat colour), they were moved to separate 9 l

tanks. Females were monitored for gravidity, and eggs were

collected by gently squeezing the abdomen.

(b) Study I—movement and metabolism of cortisol
First, we verified that cortisol was taken up into the unfertilized

eggs following immersion in a cortisol-containing solution, as this

is a common technique used to administer steroids to fish eggs

[38]. By validating an uptake of tritiated cortisol, subsequent

studies could use tritiated cortisol to trace the movement and

metabolism of cortisol during development. Ten clutches were

immersed in 50 ml of water (10% solution of Instant OceanTM) con-

taining 20 000 cpm of tritiated cortisol (specific activity¼

95.4 Ci mmol21) (Perkin-Elmer, Boston, MA) per 100 ml, which is

equivalent to 72 pg cortisol per 100 ml. To avoid solvent effects,

the 3H-cortisol that was dissolved in ethanol was added to a

glass beaker, dried under a stream of air, reconstituted in water

and counted to verify concentration. Each clutch developed in

50 ml of this solution, which contained a total of 10 000 000 cpm

of cortisol. Subsets of 10 eggs per clutch were collected after 5, 10,

20, 30 min of immersion. Eggs were rinsed three times and hom-

ogenized. Radioactivity was extracted from this homogenate by

adding 200 ml of 100% methanol and vortexing for 30 s. The

samples were then placed at 2208C for 2 h and centrifuged at

2000 rpm for 10 min. The supernatant was added to 3 ml of scintil-

lation fluid and counted on a Beckman 6500 scintillation counter.

Upon verifying that cortisol was taken up following immer-

sion, we examined the movement and metabolism of this cortisol

following fertilization. Here, unfertilized eggs were immersed in

water containing 20 000 cpm of cortisol per 100 ml and then ferti-

lized. Testes were removed from a euthanized male (MS-222

overdose), macerated in two drops of water and sperm applied

to eggs for 3 min. Following fertilization and three rinses with

fresh water, eggs were transferred to 50 ml of water still contain-

ing 20 000 cpm of cortisol per 100 ml. Keeping eggs in a solution

that still contained cortisol allowed us to test whether embryos

were able to regulate cortisol levels against a concentration gradi-

ent as this would provide a stronger test of the hypothesis that

embryos were actively modulating cortisol levels. A subset of

10 eggs was collected at this point to verify cortisol uptake,

whereas the remaining eggs were allowed to develop for 72 h,

because maternal stress has been shown to influence embryonic

gene transcription over this developmental period [37]. After
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72 h, eggs were collected and stored at 2208C until radioactivity

levels were quantified, and metabolism was characterized via

thin layer chromatography (TLC). All steroid standards were

purchased from Steraloids Inc. (Newport, RI).

Levels of radioactivity were quantified using the methanol

extraction described above. Owing to low levels of radioactivity

within eggs after 72 h of development, TLC was conducted on

the water in which the eggs developed to test for the movement

of metabolites out of the egg and into the water. Steroids were

extracted from the water using solid phase extraction with C18

Sep-pak cartridges (Waters Inc., Milford, MA) that had been

primed with 5 ml methanol followed by 5 ml distilled water

[39]. After the sample had dripped through at a rate of approxi-

mately 2 ml min21, the cartridge was washed with 5 ml of

distilled water, steroids were eluted with 5 ml of diethyl ether

and steroid conjugates were eluted with 5 ml of 100% methanol.

Eluates were dried under nitrogen gas and suspended in 100 ml

of 100% methanol. A 5 ml aliquot was counted to quantify radio-

activity levels. Only the ether fraction (free steroids) contained

radioactivity, so this fraction was used in TLC (n ¼ 3). The

remaining 95 ml were spotted onto a 4 � 8 cm, aluminium-

backed TLC plate (Sigma 70 643) 1 cm from the bottom of the

plate. Adjacent to the sample, standards of cortisone, 11 deoxy-

cortisol, 20b dihydrocortisone [40] and cortisol were spotted

onto the plates to serve as markers for the location of radio-

active metabolites. Plates were developed in chloroform :

methanol (95 : 5) [41] until the solvent front reached the top of

the plate and then were air-dried before being partitioned into

sections and counted. A 1 � 8 cm lane that contained the entire

developed sample was cut from the plate. This lane was then

cut into 16 0.5 cm � 1 cm sections. The top 15 sections were indi-

vidually placed into 3 ml scintillation fluid, and radioactivity

levels counted to compare the movement of radioactivity with

known standards [42].

(c) Study II—transcriptional response to exogenous
cortisol

The transcriptional response of embryos to exogenous cortisol

was investigated to test the hypothesis that the effects of maternal

stress on embryonic gene expression [37] were mediated by

increased cortisol exposure. This experimental approach largely

mirrors a similar experiment that demonstrated that maternal

stress (exposure to a predator) can alter embryonic transcriptional

profiles 72 h post-fertilization [37]. Six clutches of eggs were each

equally divided into three treatment groups (control, low cortisol,

high cortisol). Eggs were treated by immersion for 30 min in water

that contained 0, 500 or 1000 pg per 100 ml, respectively. These

treatments were estimated to raise cortisol levels to 11, 15 or

19 ng g21, which represent baseline, predator induced and super

physiological levels of maternally derived cortisol, respectively

[30,43,44]. Following immersion, eggs were fertilized (one male

per clutch) and allowed to develop in 50 ml of water for 72 h.

To isolate enough RNA for RNAseq, 10 embryos from each

clutch/treatment were pooled prior to RNA extraction for a

total of 18 pools (six clutches � three treatments). Total RNA

was extracted from each pool using Trizolw according to the man-

ufacturer instructions and quality analysed on an Aligent

Bioanalyser (Aligent Technologies, Palo Alto, CA). Samples were

submitted to the Roy J. Carver Biotechnology Center at the Univer-

sity of Illinois for sequencing on an Illumina HiSeq 2000 (TruSeq

SBS sequencing kit).

RNAseq data processing—FastQC was used to assess read qual-

ity and FastX toolkit was used to filter low quality reads and residual

adaptor sequences (hannonlab.cshl.edu/fastx_toolkit/). RNAseq

produced an average of 20 million reads per sample. We aligned

reads to G. aculeatus reference genome (the repeat masked reference

genome, ENSEMBL release 73), using TOPHAT (2.0.8) and BOWTIE
(2.1.0). Reads were assigned to features according to the ENSEMBL

release 73 gene annotation file (ftp://ftp.ensembl.org/pub/

release-73/gtf/gasterosteus_aculeatus/). For TOPHAT alignments,

we designated library type ‘first strand’ and otherwise used default

parameters.

Identifying differential expression—to estimate differential

gene expression we used both TUXEDO [45] and count-based

differential expression analysis protocols. Both protocols require

each sample’s (control (6), low-dose (6), high-dose (6)) reads to

align to the reference genome.

In the TUXEDO protocol, CUFFLINKS (2.2.0) reconstructed the tran-

scriptome assembly of each sample by assembling reads into

transcripts and estimating their abundance. Later CUFFMERGE was

used to merge all CUFFLINKS assemblies into a single high-quality

assembly containing both novel and known isoforms. Finally,

CUFFDIFF [45] was used to call differential gene expression using

each treatment group (control, low-dose, high-dose) samples

alignments and merged transcriptome assembly.

In the count-based protocol, HTSEQ was used to calculate

reads counts per gene. Later, we assessed differential expression

between treatments groups (control, low-dose, high-dose) using

R software package EDGER. This approach uses negative binomial

distribution to model counts distribution per gene across sample.

Count data were normalized by library size and library compo-

sition (using ‘calcNormFactors’ function). A gene was included

in the differential expression analysis if the number of counts

was greater than or equal to two count per million in any

sample. We computed a common dispersion estimate followed

by tagwise (genewise) dispersion estimation. Finally, to call differ-

ential expression between treatment groups, both ‘EXACTTEST’ and

‘GLM’ approaches were used.

(d) Study III—ATP-binding cassette transporters as a
mediator of cortisol movement

A final study was conducted to test whether inhibiting ABC

transporters affected the movement of cortisol during the first

72 h of development. For this study, seven clutches of eggs

were divided into two treatments. Half of the eggs were fertilized

and allowed to develop in water containing 20 000 cpm of

tritiated cortisol. The other half of the eggs were fertilized (by

the same male as their siblings) and allowed to develop in

water containing 20 000 cpm of cortisol PLUS 10 mM cyclosporin

A (general inhibitor of ABC transporters in fish embryos) [35].

We selected this dose of cyclosporin A based on a study in zebra-

fish embryos which showed that cyclosporin A produced effects

similar to morpholino knock-down of abcb4, which was ident-

ified as the primary regulator of xenobiotic uptake in embryos

[35]. While cyclosporin A is not as specific to a particular ABC

transporter as some other available inhibitors, this potential abil-

ity to block several transporters was viewed as a benefit for our

initial attempts to demonstrate that the efflux of steroids from

eggs was indeed an active process and not diffusion. Five eggs

from each clutch/treatment were collected after 6, 24, 48 and

72 h of development. Radioactivity levels within these pools of

five eggs were quantified via methanol extraction.

(e) Statistical analyses
To examine if levels of radioactivity changed within eggs during

development (eggs sampled after 10 min versus eggs sampled

after 72 h), a mixed model ANOVA was used. Sampling point

was included as a fixed factor, whereas clutch of origin was

included as a random variable. A similar analysis was used

to investigate the effect of cyclosporin A on cortisol levels, but

treatment (control versus inhibitor) was added as a fixed effect.

These analyses were conducted in SAS v. 9.3 (SAS Institute,

Cary, NC).

http://rspb.royalsocietypublishing.org/
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3. Results
(a) Cortisol levels in Gasterosteus aculeatus eggs

immersed in cortisol initially rise but then drop
When eggs were immersed in a solution containing
3H-cortisol, cortisol levels rapidly increased (figure 1),

which suggests that steroids can readily move into eggs,

and that the lipid-rich yolk can act as a sink [46]. However,

by 72 h, 3H-cortisol within eggs dropped significantly, even

when eggs were continuously immersed in 3H-cortisol

(F1,5 ¼ 119.13, p , 0.0001, figure 2).
(b) Exogenous cortisol is not metabolized by
Gasterosteus aculeatus embryos

One possible explanation for this decline is that cortisol was

metabolized into a form that moved out of the egg. In

that case we should be able to detect metabolites in the incu-

bation water surrounding the eggs. However, the TLC

analysis provided no evidence that metabolites of cortisol

were present in the incubation water, as essentially all detectable

radioactivity migrated with the cortisol standard (figure 3).
(c) Inhibition of ATP-binding cassette transporters
reduces efflux of cortisol

Another mechanism by which cortisol could move out of the

egg is via active transport. To test this hypothesis, we applied

an ABC transporter inhibitor (cyclosporin A). Inhibition of
ABC transporters by cyclosporin A resulted in elevated

levels of cortisol within the egg early in development, but

levels dropped to levels comparable to the control group by

72 h of development (figure 4). There were significant effects

of sample period (F3,42 ¼ 78.34, p , 0.0001) and presence of

the inhibitor (F1,42 ¼ 224.91, p , 0.0001), as well as an inter-

action between the sample period and inhibitor presence

(F3,42 ¼ 24.12, p , 0.0001) on levels of cortisol within the egg.
(d) Exogenous cortisol does not influence
transcriptional profiles of embryos

The RNASeq data suggest that 17 251 genes out of the poss-

ible 22 456 genes in the stickleback genome were expressed in

72-h embryos. However, we did not detect any differences in

gene expression between embryos that were treated with cor-

tisol compared with the control group. In other words,

immersing eggs in cortisol did not affect the expression of

any of the 17 251 genes that were present in 72-h embryos

because transcription levels in the control group were the

same as in the treatment groups. Quality assessments con-

firmed that the failure to detect differentially expressed

http://rspb.royalsocietypublishing.org/
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genes was not the result of technical problems (see electronic

supplementary material).
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4. Discussion
Results from these studies provide evidence that developing

fish embryos can modulate their exposure to maternally

derived cortisol. Our findings are consistent with previous

studies that have shown that fish eggs take up steroids from

their incubation environment [38] and that the steroid content

of eggs drops soon after fertilization [18,30]. By tracing tritia-

ted cortisol following fertilization, we demonstrated that

G. aculeatus embryos develop the capacity to transport steroids

out of the eggs soon after fertilization as evidenced by the

drop in radioactivity levels within embryos despite the fact

that they remained immersed in solution with cortisol. Our

examination of whether cortisol might be metabolized prior

to being transported from the embryo found no evidence

for cortisol metabolites. Instead, our results suggest that

stickleback embryos can clear cortisol via ABC transporters:

when ABC transporters were inhibited, the accumulation of

cortisol within the egg increased. Remarkably, embryos from

both the control and inhibited groups were able to reduce

cortisol levels by transporting cortisol back out of the egg by

72 hpf despite the fact they were still immersed in tritiated

cortisol (figure 4).

There are several possible explanations for why the inhib-

ited group was able to reduce cortisol levels down to control

levels by 72 h. The permeability of the eggs could have

decreased such that the proportion of non-inhibited transpor-

ters became sufficient to keep cortisol out of the egg [47].

Alternatively, the expression of transporters could have

increased [35] or the inhibitor may have degraded over time.

Any or all of these explanations may have led to the ability of

embryos in the inhibited group to reduce cortisol levels by

72 hpf. Regardless of the reason, these data highlight

the capacity of embryos to remove cortisol from the egg. The

drop in cortisol levels after an initial uptake suggests that

the difference between the cyclosporin A-treated embryos

and the control embryos was not owing to developmental

effects of cyclosporin A or effects on permeability as these

effects would not likely be transient in nature. But as with

any pharmacological treatment, we cannot completely rule

out the possibility that our results are influenced by unin-

tended side effects. Our transcriptome data suggest that this

removal of cortisol from the egg may confer some resistance

to an elevation in maternal cortisol exposure, because two

different doses of cortisol treatment apparently failed to influ-

ence gene transcription within embryos. Additionally, there

appears to be a difference in rates of uptake and clearance

between two of our studies (figures 2 and 4) despite the fact

that eggs were immersed in a water that contained the same

concentration of cortisol. Given that wild-caught animals

were used in these studies, we speculate that the difference

reflects year-to-year variation in egg steroid composition

owing either to variation in endogenous steroid content or

exposure to environmental chemicals. In fact, environmental

chemicals have been shown to decrease the clearance of

maternal steroids in other oviparous vertebrates [48]. Impor-

tantly, though, both studies show the same pattern: egg

steroid levels decrease within 72 h of fertilization. More work

is need to examine how endogenous steroids and
environmental chemicals might interact to alter clearance

rates. Taken together, our results demonstrate that cortisol

within the egg at fertilization is removed from the egg, which

may ultimately prevent embryonic exposure to maternal

cortisol.

There is well-established precedent for the observation that

ABC transporters are vital to modulating the exposure of fish to

exogenous chemicals [32,35,49]. Indeed, their importance for

also regulating exposure to maternal steroids is appreciated

in placental mammals [31]. However, this is the first time, to

the best of our knowledge, that ABC transporters have been

invoked as a mechanism for regulating exposure to maternal

steroids in oviparous vertebrates. Reptiles and birds have

been shown to modulate embryonic exposure to maternal

steroids via in ovo metabolism of steroids [14,50,51]. Our

studies demonstrate that another important mechanism

by which oviparous vertebrate embryos can regulate their

exposure to maternal steroids is by an active efflux of steroids

from the egg. We hypothesize that active efflux is the preferred

method by which fishes (and possibly amphibians) modulate

their exposure to maternal steroids, because their eggs are in

more direct contact with the external environment (unlike in

birds and reptiles). The evolution of the cleidoic egg of birds

and reptiles may have resulted in a switch from transporting

maternal steroids out of the egg to metabolizing steroids

within the egg as transport became less feasible owing to the

egg shell.

There is a rich literature documenting the effects of mater-

nal stress on offspring development. Often the hypothesized

mechanism linking maternal stress to offspring outcomes is

via glucocorticoids, which follows from the observation

that cortisol levels in eggs are typically higher following

maternal stress [44,52,53], and elevated cortisol has been

associated with morphological abnormalities [54], smaller size

[55], cardiac dysfunction [56], impaired learning [57] and

blunted cortisol responsiveness [58]. However, cortisol levels

drop after fertilization [55,58,59] and successful experimental

elevation of cortisol levels within eggs requires relatively high

doses to achieve small increases [55]. As a whole, this work

on cortisol effects suggests that developing embryos attempt

to buffer themselves from the potentially detrimental effects

of maternal cortisol.

At the same time, there is growing appreciation that

maternal experiences, including exposure to certain stressors,

might adaptively prepare offspring for certain environments

[60–64]. Studies such as this one suggest that such maternal

effects might not be mediated by the direct effect of maternal

cortisol on offspring. For example, although female stickle-

backs increase the cortisol content of their eggs by about 33%

following maternal stress during egg production [44], and

thousands of genes are differentially expressed between

embryos of predator exposed versus unexposed mothers [37],

we found that directly exposing embryos to cortisol did not

affect the expression of any genes at this same time point.

Importantly, maternal stress affected factors other than cortisol

content, such as egg size and embryonic metabolic rates [44].

More generally, these studies suggest that equating maternal

stress effects to glucocorticoid effects is not always accurate.

There are likely a number of scenarios where maternal stress

affects offspring without glucocorticoid exposure as well as

scenarios where manipulations of glucocorticoid exposure do

not mimic maternal stress effects. Studies such as this of the

physiological mechanisms underlying maternal stress are

http://rspb.royalsocietypublishing.org/
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necessary to untangle which effects of maternal stress may or

may not be mediated by glucocorticoid exposure.

Going forward, characterizing ABC transporters during

development will be important for understanding how organ-

isms may respond to rapidly changing environments. These

transporters are likely to not only play a role in how organisms

are directly affected by environmental chemicals, but also

how environmental perturbations such as invasive species,

habitat destruction and climate change might alter embryonic

development through maternal steroid exposure. If these

transporters serve to buffer embryos, changing environments

could increase selective pressures on the capacity of the

buffer and influence evolutionary processes. Our results

suggest that fish may be in a similar situation to placental ver-

tebrates, birds and reptiles, where the regulation of maternal

steroid exposure is dynamic and potentially responsive to

environmental conditions. A more detailed understanding of

the processes involved in maternal steroid exposure will be
vital to deciphering the adaptive significance of maternal

steroid effects.
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