Hormones and Behavior 97 (2018) 102-111

Contents lists available at ScienceDirect =t =
Hormones

and Behavior

Hormones and Behavior

journal homepage: www.elsevier.com/locate/yhbeh

Changes in behavior and brain immediate early gene expression in male
threespined sticklebacks as they become fathers

@ CrossMark

Molly Kent™', Alison M. Bell™

@ Program in Neuroscience, University of Illinois, Urbana Champaign, United States
b School of Integrative Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, Institute for Genomic Biology, University of Illinois, Urbana
Champaign, United States

ARTICLE INFO ABSTRACT

Keywords: Motherhood is a period of intense behavioral and brain activity. However, we know less about the neural and
Fatherhood molecular mechanisms associated with the demands of fatherhood. Here, we report the results of two experi-
Im“flediate f{al‘ly gene ments designed to track changes in behavior and brain activation associated with fatherhood in male threespined
:;CCEEEI:C’Z‘CS stickleback fish (Gasterosteus aculeatus), a species in which fathers are the sole providers of parental care. In

experiment 1, we tested whether males' behavioral reactions to different social stimuli depends on parental
status, i.e. whether they were providing parental care. Parental males visited their nest more in response to social
stimuli compared to nonparental males. Rates of courtship behavior were high in non-parental males but low in
parental males. In experiment 2, we used a quantitative in situ hybridization method to compare the expression
of an immediate early gene (Egr-1) across the breeding cycle — from establishing a territory to caring for off-
spring. Egr-1 expression peaked when the activities associated with fatherhood were greatest (when they were
providing care to fry), and then returned to baseline levels once offspring were independent. The medial dorsal
telencephalon (basolateral amygdala), lateral part of dorsal telencephalon (hippocampus) and anterior tuberal
nucleus (ventral medial hypothalamus) exhibited high levels of Egr-1 expression during the breeding cycle.
These results help to define the neural circuitry associated with fatherhood in fishes, and are consistent with the

Social behavior network

hypothesis that fatherhood - like motherhood - is a period of intense behavioral and neural activity.

1. Introduction

Motherhood is a period of intense behavioral and neural activation.
Decades of studies have started to reveal the structure and organization
of the maternal brain (Hillerer et al., 2014; Kinsley and Amory-Meyer,
2011; Lambert, 2012; Rilling and Young, 2014), the brain areas that are
activated during mothering (Rocchetti et al., 2014) and the neural
control of maternal care (Dulac et al., 2014). However, we know less
about the neural mechanisms underlying the transition to fatherhood
(Kentner et al., 2010).

Fishes are particularly good subjects for studying the neuroendo-
crine mechanisms involved in fathering because they exhibit tre-
mendous diversity in reproductive mode, and paternal care is relatively
common in fishes compared to other vertebrates (Smith and Wootton,
2016). Recent studies have begun to describe the dramatic neu-
roendocrine changes that accompany the transition to fatherhood in
fishes, e.g. (DeAngelis and Rhodes, 2016; Pradhan et al., 2014; Stiver
et al., 2015), and have suggested that isotocin and arginine vasotocin,
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like their mammalian homologs oxytocin and arginine vasopressin, are
involved in regulating paternal behavior in fishes (Kleszczynska et al.,
2012; O'Connell et al., 2012; Ripley and Foran, 2010). GnRH and the
distribution of GnRH neurons in key brain areas such as the preoptic
area of the hypothalamus are also key players that orchestrate re-
productive behavior in fishes, e.g. (Burmeister et al., 2005; Scaggiante
et al., 2004, 2006; Tubert et al., 2012), reviewed in (Chen and Fernald,
2008; Fernald, 2012; Maruska and Fernald, 2011).

Threespined stickleback fish are especially good models for studying
fathering because male sticklebacks are the sole providers of parental
care that is necessary for offspring survival, and their paternal behavior
has been well studied in the field and in the lab. Male sticklebacks
undergo dramatic changes in behavior and physiology during the re-
productive cycle (Wootton, 1976, 1984), which is photoperiod-depen-
dent (Hellgvist et al., 2008). For example, as day length increases,
males become aggressive, defend territories and construct nests. Only
upon completing their nest do males start to court females and display
courtship behaviors such as the conspicuous zig zag dance. Males also
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advertise their parental abilities during courtship, e.g. by fanning, even
when they do not have eggs in their nest (Candolin, 1997). After
spawning, males provide parental care for the eggs in the form of ter-
ritory defense and fanning. After the eggs hatch, certain paternal be-
haviors make an abrupt appearance: fathers become very active,
chasing and retrieving their free-swimming fry (Stein and Bell, 2012).
Males continue to defend their newly-hatched and vulnerable fry from
predators. Fathers and their fry are intimately associated during this
period, with many opportunities for sensory, especially tactile, inter-
actions. Parenting is an energetically demanding period, yet it is ne-
cessary for reproductive success (Smith and Wootton, 1999). Interest-
ingly, threespine sticklebacks exhibit greater sexual dimorphism in
brain size than any other vertebrate (Kotrschal et al., 2012) and in
sticklebacks populations in which males do not provide care, the sexual
dimorphism in brain size is reversed (Samuk et al., 2014). These results
are consistent with the hypothesis that the male stickleback brain has
evolved in response to the cognitive demands of parenting (Kotrschal
et al., 2012).

The reproductive cycle in male sticklebacks is marked by dramatic
neuroendocrine changes. For example, GnRH and gonadotropins
(Andersson et al., 1995; Hellgvist et al., 2004; Shao et al., 2015) as well
as androgens (Hoffmann et al., 2008) change as males move through
the breeding cycle, from establishing a territory to caring for offspring.
In particular, levels of 11 keto-testosterone (11KT), a potent androgen,
are high during the territorial and courtship phase but then drop when
males are providing care (Mayer et al., 2004; Pall et al., 2005; Pall
et al., 2002b). However, the drop in 11KT is not responsible for the
increase in care (Pall et al., 2002a). Instead, other studies point to ar-
ginine vasotocin (AVT) (Kleszczynska et al., 2012) and prolactin as
important players during the parental phase (Pall et al., 2004).

Here, we report the results of two experiments designed to track
changes in behavior and neural immediate early gene expression (IEG)
as male sticklebacks become fathers. In experiment 1, we compare
behavior toward conspecifics and a model predator between parental
and nonparental males. In experiment 2, we use in situ hybridization to
track changes in the expression of an IEG (Egr-1) across different stages
of the breeding cycle. IEG expression has been used to reveal brain
areas important for behavior (Clayton, 2000; Fernald, 2012; Hillerer
et al., 2014; Hofmann, 2010; Robinson et al., 2008), including those
involved in fathering in rodent models (e.g. prairie voles (Northcutt and
Lonstein, 2009), California mice (de Jong et al., 2009; Lambert et al.,
2011)). IEG expression has also been used to track changes in brain
activation in fishes (Burmeister et al., 2005; Butler and Maruska, 2016;
Desjardins et al., 2015; Desjardins and Fernald, 2010; Desjardins et al.,
2010; Harvey-Girard et al., 2010; Kress and Wullimann, 2012; Lau
et al.,, 2011; Loveland and Fernald, 2017; Maruska et al., 2013a;
Maruska et al., 2013b; O'Connell et al., 2012; O'Connell et al., 2013;
Rajan et al., 2011; Yaeger et al., 2014). We focus on Egr-1 expression in
brain areas involved in the social behavior network (Goodson, 2005;
Newman, 1999; O'Connell and Hofmann, 2011), a linked set of brain
nuclei important for social behavior in vertebrates. We use a whole
mount, quantitative in situ hybridization protocol that has been vali-
dated in several species and tissues (Bacharach et al., 2016; Long et al.,
2016; McNeill and Robinson, 2015; Stapel et al., 2016; Tantirigama
et al., 2016).

2. Methods
2.1. Animals

The three-spined sticklebacks were collected as juveniles from
Putah Creek, California. Freshwater sticklebacks typically reproduce at
one year of age, and breed several times during the spring-summer. Fish
were maintained in the laboratory in 104 1 tanks at approximately 16 °C
under 8:16 h light/dark photoperiod until they became sexually ma-
ture. The water was filtered through particulate, UV, biological and
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charcoal filters. The fish were fed ad libitum with a mixture of blood-
worms, brine shrimp and mysis shrimp daily.

Once nuptial coloration was observed, male sticklebacks were
switched to a 16:8 h light/dark photoperiod at 20 °C, measured for
length and housed individually in 9.51 (36 X 21 X 18 cm) tanks with a
refuge, an open plastic box (13 x 13 x 3 cm) filled with sand, and
algae for nest building. Prior to the experiment, males were randomly
assigned to one of five breeding stage conditions (territorial, courtship,
tending eggs, tending fry, and post-fry). To induce spawning, females
were added to the tanks 24 h after the male crept through his nest. If
spawning did not occur, another female was introduced into the tank
12-24 h later. Males were observed every day to assure that they were
providing parental care (fanning nest, hovering near nest, oxygenating
the eggs). The experiment was carried out during summer 2011.

2.1.1. Experiment 1

In order to examine changes in behavior that occur as males become
fathers, we compared the behavioral reaction of nonparental and par-
ental males to three different stimuli: a male stickleback, a female
stickleback and a model predator. Nonparental males were measured
during the courtship stage (24 h after the male crept through his nest)
and parental males were measured during the tending fry stage (three
days after hatching).

In order to measure their behavioral reaction to a female stickle-
back, males were presented with a gravid female (potential mate) in a
clear round bottom flask for 10 min. Five different gravid females were
used as stimuli. To measure their behavioral reaction to a male stick-
leback, males were presented with a reproductive male (potential rival)
in a clear round bottom flask for 10 min. Five different reproductive
and nuptially-colored males were used as stimuli. To measure their
behavioral reaction to a model predator, males were confronted with a
model bird predator. The beak of a great blue heron (a predator that
occurs in this population) was plunged into the tank every minute for
10 min. We recorded the number of zig zags (a conspicuous courtship
behavior) and visits to the nest during each ten-minute observation
period. Different individuals were measured in each condition, with the
following final sample sizes: nonparental: female stickleback, n = 9;
male stickleback, n = 6; model bird predator, n = 7; parental: female
stickleback, n = 7; male stickleback, n = 5; model bird predator,
n=6.

2.1.2. Experiment 2

Males assigned to the territorial stage were sampled after the fish
started but not yet completed a nest. Males assigned to the courtship
stage were sampled within 24 h after creeping through the nest, a
conspicuous behavior that marks the transition into the courtship stage.
Males assigned to the tending eggs stage were removed three days after
fertilization. Males assigned to the tending fry treatment were sacrificed
three days after the fry hatched, when levels of parental behavior are
high (Stein and Bell, 2012). Males assigned to the post-fry treatment
were transferred to a new tank seven days after the fry hatched, when
males typically begin to defend new territories, and were sacrificed 24 h
later, after males had recovered from handling but had not yet started a
new nest.

Males were sacrificed via decapitation between 1000 and 1400. The
head was removed from the body just behind the operculum. The
muscles at the base of the skull along with the skull were removed using
rongeurs (FST, Foster City, CA, USA). The eyes were detached from the
optic nerve using fine inverted scissors (FST). The brain (minus pitui-
tary) was then placed in 4% paraformaldahyde (Sigma Aldrich, St
Louis, MO, USA) made in phosphate buffered saline (PBS: Fisher
Scientific, Fair Lawn, NJ, USA).

Twenty-four hours later, all brains were cleaned of dura, excess fi-
bers that were attached to the brain after it was removed from the skull
and miscellaneous tissues using a stereomicroscope (Leica
Microsystems Inc., Buffalo Grove, IL, USA) to view the brain. Fine
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forceps and fine inverted scissors were used for removal of all excess.
Once the brains were clean they were placed in 100% methanol stored
at — 20 °C until being processed through the in situ hybridization
protocol.

The final sample sizes in each condition were: territorial (n = 9),
courtship (n = 8), tending eggs (n = 6), tending fry (n = 4) and post-
fry (n = 4). Fewer males were sampled in the later stages because not
all males mated and/or successfully reared eggs or fry.

2.2. In situ hybridization

To quantify Egr-1 expression, we modified an mRNA in situ hy-
bridization protocol developed for insects to analyze differential ex-
pression in whole mount brains (McNeill and Robinson, 2015). This
method combines whole mount protocols that use bright field micro-
scopy with a fluorescence microscopy protocol (Raj and Tyagi, 2010;
Raj et al.,, 2008). Stellaris® (Biosearch Technologies, Petaluma, CA,
USA) mRNA in situ hybridization probe sets comprised 48 DNA se-
quences, where each 20 bp sequence was attached to a single Quasar
fluorophore. Probes are highly specific because probe sequences de-
signed in the antisense direction bind in series along the targeted mRNA
transcript. We designed antisense probe sets against Egr-1 using an
online tool available through BioSearch (Supplementary Table 1).

Brains were prepared for hybridization through sequential rehy-
dration from 100% methanol into PBS (Fisher) with Triton-X (Promega,
Madison, WI, USA). Next, brains were treated with 2ug/ml proteinase K
(Invitrogen, Carlsbad, CA, USA) for 20 min. Proteinase K was used to
increase signal that may have been lost due to paraformaldahyde ex-
posure. Brains were then placed in 2 mg/ml glycine for 20 min to stop
the proteinase K reaction. The brains were then refixed in 4% paraf-
ormaldehyde (Sigma Aldrich) for 20 min and treated with 2 mg/ml
glycine plus 75 mM ammonium acetate. Next, brains were incubated in
prehybridization solution containing 2 X Saline sodium citrate buffer
(SCC) (Fisher), 15% formamide (Fisher), 1% blocking solution (Roche,
Indianapolis, IN), 0.5% 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS) (Fisher), 0.1% Triton-X (Fisher), 1 mg/ml
yeast tRNA (Promega), 5mM EDTA, 100 mg/ml Dextran Sulfate
(Fisher) and 1 X Denhardt's solution (Fisher) at 37 °C for four hours.
Brains were incubated overnight at 37 °C in fresh prehybridization so-
lution with Stellaris probes (table S1) tagged with Quasar 570
(BioSearch) at a concentration of 1:100.

Brains were put through sequential stringency (15% formamide,
2 X SCC, 0.1% Triton-x 100, 0.5% CHAPS) washes to remove excess
probe. Washes were diluted with 2 x SCC ending in a 1:3 dilution of
wash to SCC. After the stringency washes, the brains were gradually
dehydrated into 100% methanol and cleared for imaging with 100%
methyl salicylate (Sigma Aldrich). The brains were then covered to
prevent photobleaching. After dehydration the brains were submersed
in a 1 mM solution of DAPI dissolved in methanol.

2.3. Imaging

The whole mount brains were processed on am automated LSM 710,
confocal microscope (Carl Zeiss Microimaging Inc., Jena, Germany; NY,
USA) from the dorsal to ventral side. Brains were focused on the mi-
croscope and then 12 tile images (4 X 3) were taken to allow for the
entire brain to be analyzed. The overall thickness of the brain was also
determined and then 7um sections were imaged by exciting fluor-
ophores with a 555 nm laser line. The tiles and sections were compiled
together to give a complete image of the whole brain. Pictures were
taken and processed using software provided by Zeiss (Zeiss, 2010).

2.4. Analysis

Images were analyzed using NIH software, ImageJ. Whole brain
images were first used to measure thickness and then key anatomical
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landmarks were identified, such as the anterior and posterior commis-
sures. The two commissures were used to determine the location of
brain areas. There is no brain atlas for the stickleback brain, therefore
brain atlases from other teleost species as well as previous im-
munohistochemical studies in sticklebacks were used to locate putative
brain areas within the social behavior network (Burmeister et al., 2009;
Cerda-Reverter et al.,, 2008; Cerda-Reverter et al., 2001a, 2001b;
Ekstrom, 1994; Ekstrom et al., 1995; Ekstrom et al., 1992; Ekstrom
et al., 1985; Ekstrom and Ohlin, 1995; Ekstrom et al., 1986; Ekstrom
and Van Veen, 1984; Honkanen and Ekstrom, 1991; O'Connell and
Hofmann, 2011; Peter et al., 1975; Wulliman et al., 1996).

For example, before scanning each brain for Egr-1 and DAPI, brains
were measured on the z-plane to determine initial whole brain thick-
ness. All brains were scanned on the confocal microscope in the dorsal
to ventral direction to ensure similar patterns of expression across all
scans. Brain section images were taken every 7 um. Before a brain area
of interest was located, a second measurement of thickness was taken.
The number of images were counted from first visualization of DAPI
until no signal was present. The number of images was then multipled
by 7 to give a total pm thickness of the brain and compared to the initial
number. If the measurements were incorrect the landmarks were used
to confirm the correct location. When a brain area such as the anterior
tuberal nucleus/ventral medial hypothalamus (aTn/VMH) was located
by determining distance from the anterior commissures and overall
thickness of the brain compared to published brain atlases (Burmeister
et al., 2009; Cerda-Reverter et al., 2008; Cerda-Reverter et al., 2001a,
2001b; Ekstrom, 1994; Ekstrom et al., 1995; Ekstrom et al., 1992;
Ekstrom et al., 2001; Ekstrom et al., 1985; Ekstrom and Ohlin, 1995;
Ekstrom et al., 1986; Ekstrom and Van Veen, 1984; Honkanen and
Ekstrom, 1991; O'Connell and Hofmann, 2011; Peter et al., 1975;
Wulliman et al., 1996) an additional landmark, the ventricle, was used
to confirm the correct location. Approximately 2 mm from where the
DAPI signal was first observed, the aTn/VMH can be observed sur-
rounding the ventricle. Once the correct section was located within the
z-plane, mean gray value (MGV) measurements for Egr-1 expression
were taken. A total of 35 um of tissue was averaged to ensure a relative
MGV for each brain area like the aTn/VMH.

Egr-1 expression was measured in brain areas important for the
social behavior network (the fish name is indicated first followed by the
putative mammalian homolog): ventral tuberal/anterior hypothalamus
(VT/AH), medial dorsal telencephalon/basolateral amygdala (Dm/
AMY), ventral pallium/bed nucleus of the stria terminalis medial
amygdala (VP/BNST), lateral part of dorsal telencephalon/hippo-
campus (DI/HC), ventral part of the ventral telencephalon/lateral
septum (Vv/LS), dorsal part of the ventral telencephalon/nucleus ac-
cumbens (Vd/NA), periaqueductal gray (PAG), preoptic area parvo-
cellular (POAp), anterior tuberal nucleus/ventral medial hypothalamus
(aTn/VMH) and posterior tuberculum/ventral tegmental area (TPp/
VTA) (Fig. 1). We also measured Egr-1 expression in brainstem (located
behind the cerebellum where cell bodies were present) as a control
brain area that is unlikely to be involved in fathering.

Once a brain area was located, it was measured for mean gray value
(MGV), a measurement of optical density (Ferreira and Rasband, 2011).
MGV is calculated as MGV of pixels in region of interest divided by the
number of pixels. To control for fluorescent signal background, a
second MGV (control) was also taken in an area on the section where no
staining occurred (i.e. ventricle). The second MGV was subtracted from
the first to account for possible bleed-through of signal between sec-
tions. Because the optical sections were only 7um thick, there was a
chance that a key part of an area might have been missed in a single
section. Therefore, the same brain area was measured in five con-
secutive optical sections and the average of the five sections was
computed for each area. In situ hybridization, imaging and analysis of
the samples were carried out blind with respect to treatment and pro-
cessed in a random order between October and April 2012.

To evaluate the effectiveness of the in situ protocol for detecting
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Fig. 1. (a) Schematic horizontal drawings of brain areas measured. Images start at the dorsal part of the brain moving ventrally, with the anterior part of the brain on the left and the
posterior on the right. Brain areas measured are highlighted in gray. The fish name is indicated first followed by the putative mammalian homolog: anterior tuberal nucleus/ventral
medial hypothalamus (aTn/VMH), brain stem (BS), dorsal part of the ventral telencephalon/nucleus accumbens (Vd/NA), lateral part of dorsal telencephalon/hippocampus (DI/HC),
medial dorsal telencephalon/basolateral amygdala (Dm/AMY), periaqueductal gray (PAG), posterior tuberculum/ventral tegmental area (TPp/VTA), preoptic area parvocellular (POAp),
ventral pallium/bed nucleus of the stria terminalis_medial amygdala (Vs/BNST), ventral part of the ventral telencephalon/lateral septum (Vv/LS) and ventral tuberal/anterior hy-
pothalamus (vTn/AH). (b) Photomicrographs of Egr-1 staining show the location of each brain area sampled.

differences in brain activation, Egr-1 expression was compared in brains
taken during day vs night using both the in situ protocol and qPCR
(whole brain). Egr-1 expression was higher during the day according to
both the in situ protocol (Supplementary Fig. 1) and qPCR
(Supplementary Fig. 2). Further inspection of the ISH brains showed
higher expression in specific brain areas associated with visual pro-
cessing (Supplementary Fig. 1b). Further validation studies compared a
sense to antisense probe (Supplementary Fig. 3), a probe from a dif-
ferent species (Supplementary Fig. 4) and used a Northern blot
(Supplementary Fig. 5) to confirm that the probes for Egr-1 were spe-
cific.

2.5. Data analysis

We used generalized linear models (Poisson distribution) to test for
the effect of stimulus (male, female, predator), parental status (non-
parental, parental) and their interaction on zig zags (plus 1 to account
for zeros) and number of visits to the nest followed by post-hoc tests
based on marginal means. We report the range of Cohen's d estimates
for significant pairwise comparisons. General linear models were used
to test for differences in Egr-1 expression across breeding stages within
each brain area. Posthoc comparisons were made with the LSD test.
Within each brain region we estimated Cohen's d between each stage
relative to the tending fry stage. Model fit was assessed by visual in-
spection of the residuals. Figures show controlled mean gray value
(MGV) = one standard error of the mean (S.E.M.). Statistical analyses
were carried out in SPSS version 24.

All procedures were carried out under IACUC approval by the
University of Illinois Urbana-Champaign IACUC (#12118) and conform
to NIH standards for animal welfare. Fish were collected under col-
lecting permit # SC-3310 to AMB from California Fish and Game.

3. Results
3.1. Experiment 1

Males adjusted their courtship behavior depending on their stage in
the breeding cycle. Nonparental males exhibited high rates of courtship
behavior (the zig zag display) toward a female stickleback, but court-
ship behavior was almost entirely absent in parental males (Fig. 2a,
Stimulus Wald Chi-Square = 61.3, P < 0.0001, Parental status Wald
Chi-Square = 7.1, P = 0.008, Stimulus x Parental status Wald-Chi-
Square = 22.2, P < 0.0001, n = 40; Cohen's d pairwise estimates
ranged from 1.24-1.29). Rates of nest visitation also depended on
parental status (Fig. 2b, Stimulus Wald Chi-Square = 5.5, P = 0.064),
Parental status Wald Chi-Square = 16.7, P < 0.0001, Stimulus x Par-
ental status Wald Chi-Square = 2.8, P = 0.25, n = 40; Cohen's d
pairwise estimates ranged from 0.89-1.2). Overall, parental males vis-
ited the nest more compared to nonparental males, and rates of nest
visitation were particularly high when males were presented with a
female stickleback and a model predator.

3.2. Experiment 2

Egr-1 expression was consistently highest while males were tending
fry compared to the other stages (Fig. 3). Cohen'd d effect size estimates
comparing each stage to the tending fry stage ranged from 0.26-4.58.
This result was confirmed by visual inspection of individual brain re-
gions (example in Supplementary Fig. 6). The expression patterns
within each brain region suggest that in general, Egr-1 expression in-
creased as males proceeded through the breeding stages but then
dropped to levels comparable to those at the beginning of the breeding
cycle, i.e. the territorial stage, after parenting (Fig. 3).

In contrast, Egr-1 expression in a brain area outside the social be-
havior network (brain stem) did not differ across stages (F42¢ = 1.63,
P = 0.129, Supplementary Fig. 7). Moreover, there were no differences
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Fig. 2. Rates of behavior toward social stimuli in nonparental and parental males. (a) Zig
zag displays during the 10-min exposure to either a female stickleback, a male stickleback
or a model predator. (b) Number of trips to the nest during the 10-min exposure to either
a female stickleback, a male stickleback or a model predator. Different letters indicate
statistically significant differences between brain areas according to post-hoc tests.

in DAPI staining in the optic tectum (where penetration was greatest)
across stages (Fq26 = 0.16, P = 0.958). The Egr-1 ISH and DAPI
staining were performed on the same tissue and scanned on the mi-
croscope at the same time with two different channels for DAPI and the
Egr-1 fluorescent tag, 461 and 567 respectively. These results suggest
that the observed differences in were in fact due to Egr-1 expression and
not due other confounds, e.g. batch differences between runs, bleed-
through of staining, etc. To assess the specificity of the probe, we also
compared Egr-1 expression between day and night in medial dorsal
telencephalon/basolateral amygdala and lateral part of dorsal tele-
ncephalon/hippocampus, two areas not likely to be sensitive to day-
light. Neither comparison was statistically significant (medial dorsal
telencephalon/basolateral amygdala: t;¢ = 1.567, p = 0.137, lateral
part of dorsal telencephalon/hippocampus: t;¢ = 0.404, p = 0.179,
Supplementary Fig. 1c).

Overall, levels of Egr-1 expression were particularly high in the
lateral part of dorsal telencephalon/hippocampus, with some subtle
differences between different brain areas across stages (Fig. 3). For
example, during the territorial stage, Egr-1 expression also tended to be
high in the anterior tuberal nucleus/ventral medial hypothalamus.
Once males entered the courtship stage, Egr-1 expression tended to
increase in the ventral pallium/bed nucleus of the stria terminalis
medial amygdala and dorsal part of the ventral telencephalon/nucleus
accumbens. When males were tending eggs, expression tended to in-
crease in all measured brain areas except ventral part of the ventral
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telencephalon/lateral septum, and then expression in all brain areas
increased dramatically while males were caring for fry. When males
were no longer caring for offspring (i.e. during the post-fry stage), Egr-1
expression dropped, although it tended to remain high in the lateral
part of dorsal telencephalon/hippocampus, medial dorsal tele-
ncephalon/basolateral amygdala and anterior tuberal nucleus/ventral
medial hypothalamus relative to other brain areas (Fig. 3).

We did not detect any differences in body size among males as-
signed to the different breeding stages (standard length F; »4 = 0.75,
P = 0.57).

4. Discussion

Becoming a parent involves dramatic changes in brain, physiology
and behavior. Detailed studies of the transition to motherhood have
shown that hormonal changes during pregnancy and parturition cause
structural remodeling of the brain, which is involved in mothers' at-
traction to and responsiveness to her offspring (Pereira and Ferreira,
2016). Importantly, similar neural circuitry and systems are recruited in
the service of fathering and in adoptive parents. Indeed, while fathers
do not typically undergo pregnancy and birth (but see, for example
“pseudopregnancy” in seahorses (Roth et al., 2012) and crop milk
production in birds (Shetty et al., 1991)), fathers do often undergo
changes that serve the same function, namely to successfully rear off-
spring, e.g. building a nest, defending the nest, providing care, re-
sponding to the changing needs of their offspring, etc. Indeed, func-
tional MRI studies in humans show that similar brain areas are
activated in mothers and fathers while they care for their offspring
(Abraham et al., 2014; Rilling, 2013). However, we know less about the
neural mechanisms associated with fatherhood in particular. Most of
the animal models for fatherhood exhibit biparental care (e.g. African
striped mice (Schradin et al., 2013), cichlids (O'Connell et al., 2012),
California mice (Perea-Rodriguez et al., 2015), dart frogs (Schulte and
Summers, 2017), degus (Gos et al., 2014), hamsters (Brooks et al.,
2005)), and in biparental systems it can be difficult to tease out the
effects of joint-caregiving from fatherhood per se (but see (DeAngelis
et al., 2017) and (O'Connell et al., 2012)).

Results of experiment 1 suggest that males fine-tune their beha-
vioral reactions to social stimuli depending on their parental status.
Previous studies have suggested that although male sticklebacks will
mate multiply within a given breeding attempt, they usually stop
courting females once they have eggs in their nest (Kraak et al., 1999).
Our behavioral results are consistent with this observation: males finely
tuned their conspicuous courtship behavior depending on their parental
status — only nonparental males performed zig zags. We also found that
males modulated their nest-directed activities depending on their par-
ental status and the immediate social context: parental males visited
their nests more than nonparental males, and rates of nest visitation
were particularly high when they were presented with a female stick-
leback and a model predator. Both female sticklebacks and birds are
known to be nest predators (Bellesisles et al., 1990; Bellesisles and
Fitzgerald, 1993; Defraipont et al., 1992; Fitzgerald, 1991, 1992;
Fitzgerald et al., 1992; Foster, 1988; Largiader et al., 2001) therefore
increased nest visitation rate in the presence of a female stickleback and
a model bird predator could reflect increased nest defense.

The results from Experiment 2 suggest that dramatic changes in
brain IEG expression accompany the transition between the non-
parental and parental phases. Egr-1 expression increased as males
started to provide care, and was especially high after the eggs hatched.
This result parallels a study of biparental California mice, where ex-
posing fathers to pup stimuli increased IEG expression in key brain
areas that are involved in processing emotional stimuli such as the
lateral habenula, caudal dorsal raphe nucleus (de Jong et al., 2010). We
infer that the increase in Egr-1 expression in this study reflects the
growing behavioral demands of caring for active offspring. For ex-
ample, once the eggs hatch, fathers constantly engage in reciprocal
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Fig. 3. (continued)

behavioral interactions with their fry, and fry provide multiple types of
sensory information. Fathering fry is particularly demanding as fathers
must adjust their caregiving to match the physiological and behavioral
needs of their free-swimming offspring.

It is also noteworthy that Egr-1 expression in fathers' brains returned
to ‘baseline’, pre-reproductive levels after they successfully reproduced.
This result is consistent with studies of maternal care which have shown
that brain IEG expression increases during care, and drops when off-
spring are absent (reviewed in (Stack and Numan, 2000)). The fact that
Egr-1 expression dropped after breeding suggests that the high levels of
Egr-1 expression observed while males were caring for offspring does
not simply reflect the effects of season, maturation, age or experience.
This pattern is intriguing given that male sticklebacks typically breed
more than once during the breeding season, and there is widespread
evidence that parenting experience permanently changes the brain and
behavior of mothers (‘once a mother always a mother’, reviewed in
(Stolzenberg and Champagne, 2016)). Further investigations of changes
in neural IEG expression as a function of parenting experience in male
sticklebacks is a promising future direction.

In experiment 2, Egr-1 expression changed over a relatively long,
approximately 10 day period. These results are consistent with the lit-
erature showing that IEG expression can vary over both relatively short
(minutes) and long (days) timescales. Other studies have documented
similar constitutively different levels of IEG expression between rela-
tively long-lasting states, e.g. between times of day (Kornhauser et al.,
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1996; Moffatt et al., 1995; Prosser et al., 1994) and stages of estrus
(Lloyd et al., 1994; Nappi et al., 1997; Slade and Carter, 2000). Our
results suggests that our in situ protocol is capable of tracking these
quantitative changes in gene expression.

4.1. Egr-1 expression in particular brain areas

One somewhat surprising result from this study is that Egr-1 was
expressed in many nodes within the social behavior network, rather
than just a few. One possible explanation for this finding is that paternal
care in sticklebacks involves elements not only of providing care, but
also of aggression toward intruders and predators, and mating (because
males continue to court females after they mate). We speculate that
there was IEG expression in so many nodes of the social behavior net-
work in male sticklebacks during the reproductive cycle because their
behavior during this period is multidimensional. Indeed, it is possible
that some of the changes in Egr-1 expression could be due to changes in
activity or swimming, rather than attributable to the effects of par-
enting per say.

That being said, IEG expression was especially high in certain nodes
within the social behavior network. For example, our results suggest
that the lateral part of dorsal telencephalon/hippocampus had high
levels of IEG expression in male sticklebacks throughout the breeding
cycle. High levels of IEG expression in the lateral part of dorsal tele-
ncephalon/hippocampus could reflect the importance of cognitive
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processes, especially spatial cognition, for territorial males. Learning
and memory are especially important for territorial animals (Stamps
and Krishnan, 2001), which need to learn the spatial boundaries of their
territory and engage in repeated interactions with their neighbors as
they learn the boundaries of their territory and how to detect and repel
intruders (Peeke, 1969; Peeke and Veno, 1973). In rodents, both mo-
thers (Kinsley and Lambert, 2006; Levy et al., 2011; Pawluski et al.,
2016; Ruscio et al., 2008) and fathers (Glasper et al., 2011; Lambert
et al.,, 2011) undergo changes in hippocampal-mediated plasticity. A
promising research direction is to examine the effect of experience as a
parent on neurogenesis, hippocampal plasticity and performance on
cognitive tasks in male sticklebacks.

The preoptic area is often associated with maternal, paternal and
biparental behaviors in vertebrates (Alger et al., 2009; Bales and
Saltzman, 2016; Buntin et al., 2006; de Jong et al., 2009; Gammie,
2005; Lee and Brown, 2002, 2007; Numan, 1974, 1986). For example,
the preoptic bed nuclei of the stria terminalis is involved in the switch
from infanticidal to paternal behavior (Tsuneoka et al., 2015) and le-
sions to the POA disrupted paternal behavior (Akther et al., 2014) in
male mice. Surprisingly, IEG expression in the POAp was not as high as
in other brain areas in this study. Instead, two other brain areas — the
anterior tuberal nucleus (ventral medial hypothalamus) and medial
dorsal telencephalon (basolateral amygdala) — exhibited relatively
higher levels of Egr-1 expression during the breeding cycle in this study,
especially when fry were present. The VMH has been implicated with
maternal care in both birds (Pawlisch et al., 2012) and mammals
(Cameron et al., 2011; Kinsley and Lambert, 2006). For example, the
VMH is rich in steroid receptors in vertebrates (O'Connell and
Hofmann, 2011), was activated in female starlings once they had a nest
(Pawlisch et al., 2012), and inhibits maternal behavior in rats (Bridges
et al., 1999). The VMH projects directly to the dorsal telencephalon/
hippocampus in teleosts (O'Connell and Hofmann, 2011) therefore we
speculate that the increased IEG expression in the VMH and hippo-
campus observed in this study reflects their coordinated regulation of
parental and territorial behavior in sticklebacks. Further investigation
into the types of cells showing Egr-1 expression will provide more in-
formation as to the role of both the VMH and hippocampus in the be-
havioral shifts necessary for coordinating care and defense.

The amygdala has also been linked to paternal behavior in mam-
mals (reviewed in (Bales and Saltzman, 2016)). Both the PAG and VTA
have shown increases in IEG expression in mothers (Gaffori and Le
Moal, 1979; Lonstein and Stern, 1997), similar to the increases ob-
served in this study of fathers. While we detected Egr-1 expression in
the lateral septum, its expression was not quite as high as expected
based on other studies. For example, cfos expression was higher in the
lateral septum of fathers vs non-fathers in cichlids (O'Connell et al.,
2012), and the lateral septum shows high levels of peptides such as
vasopressin in fathering California mice (Bester-Meredith et al., 1999).
It is possible that these differences reflect different demands of care-
giving in the different species, e.g. huddling and grooming versus fan-
ning and territory defense.

Altogether, our results suggest that dramatic changes in behavior as
male sticklebacks become fathers is accompanied by changes in neural
gene expression in the brain. These results help to define the neural
circuitry of fatherhood in fishes.
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