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It is now well appreciated that individual animals behave

differently from one another and that individual differences in

behaviors — personality differences — are maintained through

time and across situations. Quantitative genetics has emerged

as a conceptual basis for understanding the key ingredients of

personality: (co)variation and plasticity. However, the results

from quantitative genetic analyses are often divorced from

underlying molecular or other proximate mechanisms. This

disconnect has the potential to impede an integrated

understanding of behavior and is a disconnect present

throughout evolutionary ecology. Here we discuss some of the

main conceptual connections between personality and

quantitative genetics, the relationship of both with genomic

tools, and areas that require integration. With its consideration

of both trait variation and plasticity, the study of animal

personality offers new opportunities to incorporate molecular

mechanisms into both the trait partitioning and reaction norm

frameworks provided by quantitative genetics.
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Introduction
A thriving area of research in the study of animal behavior

involves understanding consistent individual differences

(‘animal personality’). There is growing appreciation that

individual animals within natural populations behave

differently from one another, and that they retain these

behavioral differences through time and across situa-

tions. Consistent individual differences in behavior are
www.sciencedirect.com 
interesting to animal behaviorists for at least three

reasons. First, we want to know why individuals are

different from one another; in other words, why is there

variation? Second, we want to understand why behavioral

traits are correlated in particular configurations (i.e. as

components of behavioral syndromes). Why, for exam-

ple, are boldness and aggressiveness correlated in some

populations but not others? Third, we want to know why

individuals have a behavioral type that they maintain

over time — what limits behavioral plasticity? The key

features of personality — among individual (co)variation

and within individual consistency — are what distin-

guishes the study of personality from simply the study

of behavior.

Interest regarding animal personalities increasingly inte-

grates research across levels of analysis and combines

different methodological approaches. In particular there

is growing interest in evolutionary processes that can

generate consistent individual differences and wide-

spread appreciation that understanding the proximate

mechanisms underlying personality can shed light on

its causation and evolution.

Quantitative genetics provides a framework
for understanding personality
Quantitative genetics provides a strong conceptual basis

for considering the key ingredients of personality: (co)-

variation and plasticity [1]. In particular, quantitative

genetics provides a statistical framework for partitioning

trait variation, covariation within and among individuals,

and can estimate population and individual level behav-

ioral plasticity [1]. For example, mixed effects statistical

models can estimate reaction norms — phenotypic plas-

ticity — using the phenotypic equation [2]:

yij ¼ ðb0 þ ind 0jÞ þ ðb1 þ ind1jÞxij þ e0ij (1)

where yij is the behavioral response of individual j at

instance i [3��]. The different parts of the equation

correspond to population level average behavioral

responses (b0, assuming centering of predictor variables),

the individual’s deviation from this average (ind0j, i.e.

personality variation), and residual variation for that

individual at that particular instance (e0ij). Plasticity

enters via xij, which is the environment experienced

by that individual at that instance. If the population as

a whole shows behavioral plasticity, this can be estimated

(b1) and individual level plasticity can also be estimated

(ind1j). Individual average behavior as it differs from the
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population mean (ind0j) and individual plasticity as it

differs from population level plasticity (ind1j) might also

be correlated such that personality and plasticity are corre-

lated (for further details and assumptions see [3��]). The

emergence of quantitative genetics as an organizational

basis for the field of personality research has allowed the

rapid translation of statistical methods to the field and

highlighted evolutionary questions of potential impor-

tance (e.g. [4]).

The problem: how to incorporate molecular
mechanisms?
However, while quantitative genetics provides a concep-

tual basis for understanding consistent individual differ-

ences, the results from quantitative genetic analyses are

often statistical abstractions, divorced from underlying

molecular or other proximate mechanisms. Indeed, the

prevailing approaches for studying the genetic basis of

traits tend to focus on either the quantitative genetic or

molecular side of the equation, and the two approaches

require very different tools. Studies of quantitative ge-

netics and molecular mechanisms are also often carried

out in isolation of each other and their results are difficult

to integrate. For example, one study might compute a

genetic correlation between two behaviors [5], while

another study in the same species finds correlated pat-

terns of genome-wide expression associated with these

two behaviors [6,7]. Similarly, one study might estimate

the slope of a behavioral reaction norm across environ-

ments, while another shows that gene expression changes

across environments. Unfortunately the results from

these approaches are not immediately comparable.

The gap between the statistical abstractions of quantita-

tive genetics and the actual genetic or molecular mecha-

nisms underlying them can be a problem because

different mechanisms can produce the same outcome,

and/or have different implications for evolution. For

example, a relatively low estimate of heritability could

reflect either low genetic variation or high non-genetic

variation. Similarly, a genetic correlation between two

behaviors could reflect either pleiotropy (when the same

genes influence the two traits), physical linkage between

loci or selection-induced linkage disequilibrium (when

the traits are influenced by different, co-selected genes)

[4,5,8]. Finally, phenotypic plasticity could reflect allelic

sensitivity (different genes underlie the trait in different

environments) or gene regulation (the same gene influ-

ences the trait in different environments, but the gene is

regulated differently in the two environments [9]). Bridg-

ing this gap is an important priority for all of biology and

emerging interest in personality offers an opportunity for

combining molecular mechanisms and quantitative ge-

netic approaches. Arguably, the advancement of person-

ality research — with its concern for both variation

among-individuals and for plasticity — necessitates this

synthesis.
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One strategy for bridging the divide between molecular

mechanisms and traditional quantitative genetics is to

identify the specific genetic variants that contribute to

additive genetic variation and thus to phenotypic varia-

tion. Identification of such genetic variants can be

achieved via quantitative trait loci (QTL) studies and

genome-wide association studies (GWAS). While such

approaches are currently limited to studying traits under-

lain by genes of large effect [10], finding such genes can

be informative for understanding the proximate basis of

traits, and can be used to address longstanding questions

about the genetic basis of adaptation [11�]. Identification

of such genes also allows better understanding of the

evolution of behavior and whether particular responses

might be deeply conserved or novel. Finally, intensive

public investment in GWAS was driven by concerns

regarding human health, for which understanding how

particular genes affect behavior can be highly relevant

[12].

A number of recent papers have identified QTL associ-

ated with behavioral variation in natural populations, for

example burrowing behavior in mice [13], schooling

behavior in sticklebacks [14], aggressive behavior in

Drosophila [15] and feeding behavior in Caenorhabditis
elegans [16]. Importantly, such information from QTL

studies can be integrated into the statistical framework

provided by traditional quantitative genetics. For exam-

ple, the proportion of phenotypic variation attributable to

QTL variation can be framed in terms of heritability due

to that QTL (but see [17]). Further, the phenotypic

equation can be modified to include information about

the influence of particular loci (e.g. QTL, expanding from

[18]):

yijm ¼ ðb0 þ ind0j þ G0mÞ þ ðb1 þ ind 1jÞxij þ e0ij (2)

where the individual’s phenotype is now also determined

by a known locus (m, e.g. a particular QTL) which has an

estimable average contribution to the phenotype (G0m; as

above this represents a deviation from the population

level average, b0). Within this framework, the contribu-

tion of variation at specific loci and epistatic interactions

among them can thereby be estimated. Moreover, this

framework can also be extended to include not only

directly estimable genetic influences on behavior but also

inferred genetic influences when pedigree information is

known and relatedness included (i.e. application of the

‘animal model’, [19]). However, it is likely to be chal-

lenging to apply this general framework to natural varia-

tion in behavioral traits with fitness consequences,

because they are typically underlain by hundreds of genes

of small effect and influenced by both genetic variation

and the environment [20].

In principle, Eq. (2) can incorporate information about

particular genes that might contribute to individual
www.sciencedirect.com
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Box 1 Sample challenges for integrating molecular mechanisms

into quantitative genetics, as applied to personality

� Can genome-wide gene expression data be used to link the P and

G matrix?

� How to relate pleiotropy via a genetic correlation with patterns of

gene expression?

� How to relate I � E or G � E reaction norms estimated within a

quantitative genetic framework with gene expression measured in

different environments?

� Is there a way to detect permanent environment, among-

individual, within-individual and residual effects in gene expression

data?

� Do differences in brain gene expression between behavioral types

reflect additive genetic variation, among-individual variation or

within-individual variation?
variation in plasticity, via the same manner by which

individual plasticity was included:

yijm ¼ ðb0 þ ind 0j þ G0mÞ þ ðb1 þ ind 1j þ G1mÞxij

þ e0ij (3)

where the individual’s known genotype (m) now has an

estimable plastic effect on the behavior of the individual

(G1m) based on the environment currently experienced

(xij). However it is likely to be challenging to empirically

obtain these estimates.

An alternative to QTL and GWAS that comes closer to

capturing molecular mechanisms associated with plastic-

ity involves measuring genome-wide gene expression

(e.g. [21,22�,23]). The appeal of measuring genome-wide

expression, as opposed to focusing on fixed genetic varia-

tion, is that it can reveal which genes in the genome are

responsive to the environment, and therefore likely to be

related to phenotypic plasticity. For example, recent

genome-wide transcription studies have revealed that

roughly �10% of all of the genes in the genome are

differentially expressed in response to a mating opportunity
[24–28,29�], predation risk [7,30,31], or a territorial challenge
[6,32,33�]. Recent evidence suggests that transcriptional

responses can be the result of a conserved genomic

response to social challenges [34]. Genome-wide gene

expression studies have also detected differences in brain

gene expression between behavioral types, for example

scouts versus nonscout honey bees [35] and alternative

mating types [29�,36,37]. A few particularly exciting

recent studies have both compared gene expression be-

tween behavioral types and changes in gene expression in

response to the environment [29�,38]. This strategy can

inform our understanding of the evolution of plasticity by

identifying potential targets of selection on plasticity [39].

However, studies measuring gene expression in regards to

behavior largely occur in isolation of studies aimed at

quantifying repeatability, heritability and genetic correla-

tions–the traditional province of quantitative genetics

(but see eQTL [40]). Unfortunately, how results from
www.sciencedirect.com 
genome-wide gene expression studies translate to the

conceptual framework of quantitative genetics remains

to be resolved. This is not a trivial problem and there are

several specific (e.g. Box 1) and general questions that

must be addressed. It is, however, an essential problem as

our theoretical understanding of evolution is in large part

tied to quantitative genetic theory.

Conclusions: Personality requires integration
Understanding personality — consistent individual dif-

ferences — requires consideration of both variation and

plasticity. The study of personality has prompted ques-

tions about how processes that can generate variation can

coexist alongside processes that allow within-individual

plasticity, and indeed, how those processes are related to

each other [41]. The study of personality therefore offers

an opportunity for integration and improved understanding

of both individual differences and behavioral plasticity.

The study of personality also prompts a comprehensive

synthesis of molecular mechanisms into both the variance

partitioning and reaction norm frameworks provided by

quantitative genetics. This integration of stability and

plasticity alongside the integration of molecular mecha-

nisms and quantitative genetics represents the next fron-

tier for personality research and will similarly advance not

only the study of animal behavior but evolutionary ecology

as a whole.
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